DENSITY OF POSITIVE LYAPUNOV EXPONENTS FOR SL(2, R)-COCYCLES

被引:29
作者
Avila, Artur [1 ,2 ]
机构
[1] CNRS, UMR 7586, Inst Math Jussieu, F-75013 Paris, France
[2] IMPA, BR-22460320 Rio De Janeiro, Brazil
关键词
GENERICITY; SPECTRUM;
D O I
10.1090/S0894-0347-2011-00702-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:999 / 1014
页数:16
相关论文
共 22 条
[1]   Generic singular spectrum for ergodic Schrodinger operators [J].
Avila, A ;
Damanik, D .
DUKE MATHEMATICAL JOURNAL, 2005, 130 (02) :393-400
[2]   A formula with some applications to the theory of Lyapunov exponents [J].
Avila, A ;
Bochi, J .
ISRAEL JOURNAL OF MATHEMATICS, 2002, 131 (1) :125-137
[3]  
AVILA A, MONOTONIC COCY UNPUB
[4]  
AVILA A, KOTANI LAST SC UNPUB
[5]   DENSITY OF POSITIVE LYAPUNOV EXPONENTS FOR QUASIPERIODIC SL(2, R)-COCYCLES IN ARBITRARY DIMENSION [J].
Avila, Artur .
JOURNAL OF MODERN DYNAMICS, 2009, 3 (04) :631-636
[6]   On the Spectrum and Lyapunov Exponent of Limit Periodic Schrodinger Operators [J].
Avila, Artur .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 288 (03) :907-918
[7]   ON THE MEASURE OF THE SPECTRUM FOR THE ALMOST MATHIEU OPERATOR [J].
AVRON, J ;
VONMOUCHE, PHM ;
SIMON, B .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (01) :103-118
[8]   ALMOST PERIODIC SCHRODINGER-OPERATORS .2. THE INTEGRATED DENSITY OF STATES [J].
AVRON, J ;
SIMON, B .
DUKE MATHEMATICAL JOURNAL, 1983, 50 (01) :369-391
[9]  
BENYAMINI Y, 1999, C PUBLICATION AM MAT, V48
[10]   Genericity of zero Lyapunov exponents [J].
Bochi, J .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 :1667-1696