Deep Neural Networks for Wind and Solar Energy Prediction

被引:54
|
作者
Diaz-Vico, David [1 ,2 ]
Torres-Barran, Alberto [1 ,2 ]
Omari, Adil [1 ,2 ]
Dorronsoro, Jose R. [1 ,2 ]
机构
[1] Univ Autonoma Madrid, Dept Ingn Informat, Madrid, Spain
[2] Univ Autonoma Madrid, Inst Ingn Conocimiento, Madrid, Spain
关键词
Deep learning; Convolutional neural network; Wind energy; Solar energy;
D O I
10.1007/s11063-017-9613-7
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep Learning models are recently receiving a large attention because of their very powerful modeling abilities, particularly on inputs that have a intrinsic one- or two-dimensional structure that can be captured and exploited by convolutional layers. In this work we will apply Deep Neural Networks (DNNs) in two problems, wind energy and daily solar radiation prediction, whose inputs, derived from Numerical Weather Prediction systems, have a clear spatial structure. As we shall see, the predictions of single deep models and, more so, of DNN ensembles can improve on those of Support Vector Regression, a Machine Learning method that can be considered the state of the art for regression.
引用
收藏
页码:829 / 844
页数:16
相关论文
共 50 条
  • [21] A neural networks approach for wind speed prediction
    Mohandes, MA
    Rehman, S
    Halawani, TO
    RENEWABLE ENERGY, 1998, 13 (03) : 345 - 354
  • [22] Solar Energy Prediction Model Based on Artificial Neural Networks and Open Data
    Manuel Barrera, Jose
    Reina, Alejandro
    Mate, Alejandro
    Carlos Trujillo, Juan
    SUSTAINABILITY, 2020, 12 (17)
  • [23] Performance prediction of a solar thermal energy system using artificial neural networks
    Yaici, Wahiba
    Entchev, Evgueniy
    APPLIED THERMAL ENGINEERING, 2014, 73 (01) : 1348 - 1359
  • [24] A Prediction Model for Energy Production in a Solar Concentrator Using Artificial Neural Networks
    Ricci, Leonardo
    Papurello, Davide
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2023, 2023
  • [25] Application of Neural Networks Solar Radiation Prediction for Hybrid Renewable Energy Systems
    Chatziagorakis, P.
    Elmasides, C.
    Sirakoulis, G. Ch.
    Karafyllidis, I.
    Andreadis, I.
    Georgoulas, N.
    Giaouris, D.
    Papadopoulos, A. I.
    Ziogou, C.
    Ipsakis, D.
    Papadopoulou, S.
    Seferlis, P.
    Stergiopoulos, F.
    Voutetakis, S.
    ENGINEERING APPLICATIONS OF NEURAL NETWORKS (EANN 2014), 2014, 459 : 133 - 144
  • [26] Prediction of geomagnetic storms from solar wind data using Elman recurrent neural networks
    Wu, JG
    Lundstedt, H
    GEOPHYSICAL RESEARCH LETTERS, 1996, 23 (04) : 319 - 322
  • [27] Wind energy prediction and monitoring with neural computation
    Kramer, Oliver
    Gieseke, Fabian
    Satzger, Benjamin
    NEUROCOMPUTING, 2013, 109 : 84 - 93
  • [28] Multi-task learning for the prediction of wind power ramp events with deep neural networks
    Dorado-Moreno, M.
    Navarin, N.
    Gutierrez, P. A.
    Prieto, L.
    Sperduti, A.
    Salcedo-Sanz, S.
    Hervas-Martinez, C.
    NEURAL NETWORKS, 2020, 123 : 401 - 411
  • [29] An Intelligent Approach to Short-Term Wind Power Prediction Using Deep Neural Networks
    Niksa-Rynkiewicz, Tacjana
    Stomma, Piotr
    Witkowska, Anna
    Rutkowska, Danuta
    Slowik, Adam
    Cpalka, Krzysztof
    Jaworek-Korjakowska, Joanna
    Kolendo, Piotr
    JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2023, 13 (03) : 197 - 210
  • [30] Multi-objective prediction intervals for wind power forecast based on deep neural networks
    Zhou, Min
    Wang, Bo
    Guo, Shudong
    Watada, Junzo
    INFORMATION SCIENCES, 2021, 550 : 207 - 220