Remote sensing northern lake methane ebullition

被引:55
作者
Engram, M. [1 ]
Anthony, K. M. Walter [1 ,2 ]
Sachs, T. [3 ]
Kohnert, K. [3 ,4 ]
Serafimovich, A. [3 ,8 ]
Grosse, G. [5 ,6 ]
Meyer, F. J. [7 ]
机构
[1] Univ Alaska Fairbanks, Water & Environm Res Ctr, Fairbanks, AK 99775 USA
[2] Univ Alaska Fairbanks, Int Arctic Res Ctr, Fairbanks, AK USA
[3] GFZ German Res Ctr Geosci, Potsdam, Germany
[4] Leibniz Inst Freshwater Ecol & Inland Fisheries, Dept Expt Limnol, Stechlin, Germany
[5] Permafrost Res Ctr, Helmholtz Ctr Polar & Marine Res, Alfred Wegener Inst, Potsdam, Germany
[6] Univ Potsdam, Inst Geosci, Potsdam, Germany
[7] Univ Alaska Fairbanks, Geophys Inst, Fairbanks, AK USA
[8] Deutsch Wetterdienst, Offenbach, Germany
基金
美国国家科学基金会;
关键词
SYNTHETIC-APERTURE-RADAR; ARCTIC LAKES; BACKSCATTER CHARACTERISTICS; FLUX MEASUREMENTS; SAR BACKSCATTER; SHALLOW LAKES; ICE; EMISSIONS; ALASKA; PERMAFROST;
D O I
10.1038/s41558-020-0762-8
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Northern lakes are considered a major source of atmospheric methane (CH4), a potent GHG(1,2). However, large uncertainties in their emissions (7-26 Tg CH4 yr(-1); ref. (2)) arise from challenges in upscaling field data, including fluxes by ebullition (bubbling), the dominant emission pathway(2). Remote sensing of ebullition would allow detailed mapping of regional emissions but has hitherto not been developed. Here, we show that lake ebullition can be imaged using synthetic aperture radar remote sensing during ice-cover periods by exploiting the effect of ebullition on the texture of the ice-water interface. Applying this method to five Alaska regions and combining spatial remote sensing information with year-round bubble-trap flux measurements, we create ebullition-flux maps for 5,143 Alaskan lakes. Regional lake CH4 emissions, based on satellite remote sensing analyses, were lower compared to previous estimates based on upscaling from individual lakes(2,3) and were consistent with independent airborne CH4 observations. Thermokarst lakes formed by thaw of organic-rich permafrost had the highest fluxes, although lake density and lake size distributions also controlled regional emissions. This new remote sensing approach offers an opportunity to improve knowledge about Arctic CH4 fluxes and helps to explain long-standing discrepancies between estimates of CH4 emissions from atmospheric measurements and data upscaled from individual lakes. Arctic lake methane emissions, which occur primarily by ebullition, are difficult to quantify from extrapolating in situ data due to spatial and temporal variability. Remote sensing can detect ebullition, through changes in frozen lake surface properties, reducing uncertainty in emission fluxes.
引用
收藏
页码:511 / +
页数:20
相关论文
共 54 条
[1]   Cross continental increase in methane ebullition under climate change [J].
Aben, Ralf C. H. ;
Barros, Nathan ;
van Donk, Ellen ;
Frenken, Thijs ;
Hilt, Sabine ;
Kazanjian, Garabet ;
Lamers, Leon P. M. ;
Peeters, Edwin T. H. M. ;
Roelofs, Jan G. M. ;
Domis, Lisette N. de Senerpont ;
Stephan, Susanne ;
Velthuis, Mandy ;
Van de Waal, Dedmer B. ;
Wik, Martin ;
Thornton, Brett F. ;
Wilkinson, Jeremy ;
DelSontro, Tonya ;
Kosten, Sarian .
NATURE COMMUNICATIONS, 2017, 8
[2]  
AMAP, 2015, AMAP ASS 2015 METH A
[3]   Constraining spatial variability of methane ebullition seeps in thermokarst lakes using point process models [J].
Anthony, Katey M. Walter ;
Anthony, Peter .
JOURNAL OF GEOPHYSICAL RESEARCH-BIOGEOSCIENCES, 2013, 118 (03) :1015-1034
[4]  
Anthony KMW, 2012, NAT GEOSCI, V5, P419, DOI [10.1038/ngeo1480, 10.1038/NGEO1480]
[5]   Estimating methane emissions from northern lakes using ice-bubble surveys [J].
Anthony, Katey M. Walter ;
Vas, Dragos. A. ;
Brosius, Laura ;
Chapin, F. Stuart, III ;
Zimov, Sergey A. ;
Zhuang, Qianlai .
LIMNOLOGY AND OCEANOGRAPHY-METHODS, 2010, 8 :592-609
[6]   21st-century modeled permafrost carbon emissions accelerated by abrupt thaw beneath lakes [J].
Anthony, Katey Walter ;
von Deimling, Thomas Schneider ;
Nitze, Ingmar ;
Frolking, Steve ;
Emond, Abraham ;
Daanen, Ronald ;
Anthony, Peter ;
Lindgren, Prajna ;
Jones, Benjamin ;
Grosse, Guido .
NATURE COMMUNICATIONS, 2018, 9
[7]  
Anthony KW, 2016, NAT GEOSCI, V9, P679, DOI [10.1038/NGEO2795, 10.1038/ngeo2795]
[8]   Threshold sensitivity of shallow Arctic lakes and sublake permafrost to changing winter climate [J].
Arp, Christopher D. ;
Jones, Benjamin M. ;
Grosse, Guido ;
Bondurant, Allen C. ;
Romanovsky, Vladimir E. ;
Hinkel, Kenneth M. ;
Parsekian, Andrew D. .
GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (12) :6358-6365
[9]  
Aubinet M., 2012, Eddy covariance: a practical guide to measurement and data analysis, DOI [10.1007/978-94-007-2351-1, DOI 10.1007/978-94-007-2351-1]
[10]   Methane emissions from lakes: Dependence of lake characteristics, two regional assessments, and a global estimate [J].
Bastviken, D ;
Cole, J ;
Pace, M ;
Tranvik, L .
GLOBAL BIOGEOCHEMICAL CYCLES, 2004, 18 (04) :1-12