ON COMMUTATIVITY OF BANACH ALGEBRAS WITH DERIVATIONS

被引:13
作者
Ali, Shakir [1 ]
Khan, Abdul Nadim [2 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Math, Jeddah 21589, Saudi Arabia
[2] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
关键词
Banach algebra; derivation;
D O I
10.1017/S0004972715000118
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to discuss the commutativity of a Banach algebra A via its derivations. In particular, we prove that if A is a unital prime Banach algebra and A has a nonzero continuous linear derivation d : A -> A such that either d((xy)(m)) - x(m)y(m) or d((xy)(m)) - y(m)x(m) is in the centre of A for an integer m = m(x, y) and sufficiently many x, y, then A is commutative. We give examples to illustrate the scope of the main results and show that the hypotheses are not superfluous.
引用
收藏
页码:419 / 425
页数:7
相关论文
共 16 条
[1]  
Beil H. B., 1999, QUAEST MATH, V22, P329
[2]   ON A COMMUTATIVITY THEOREM OF HERSTEIN [J].
BELL, HE .
ARCHIV DER MATHEMATIK, 1970, 21 (03) :265-&
[3]  
Bonsall F.F., 1973, Complete Normed Algebras
[4]  
Herstein I. N., 1961, Michigan Math. J, V8, P29
[5]  
Herstein I. N., 1963, MICH MATH J, V10, P269, DOI [DOI 10.1307/MMJ/1028998910, 10.1307/mmj/1028998910]
[6]  
Herstein I.N., 1976, Chicago Lectures in Mathematics
[7]  
Hongan M., 1997, INT J MATH MATH SCI, V20, P413, DOI DOI 10.1155/S0161171297000562
[8]  
Lee P.-H., 1983, B I MATH ACAD SIN, V11, P75
[9]  
Mayne J., 1976, CANAD MATH B, V19, P113, DOI [DOI 10.4153/CMB-1976-017-1, 10.4153/CMB-1976-017-1]
[10]  
Posner E. C., 1957, Proc. Amer. Math. Soc., V8, P1093, DOI [DOI 10.1090/S0002-9939-1957-0095863-0, 10.1090/S0002-9939-1957-0095863-0]