Development of machine learning based models for design of high entropy alloys

被引:8
|
作者
Bobbili, Ravindranadh [1 ]
Ramakrishna, B. [1 ]
Madhu, Vemuri [1 ]
机构
[1] DMRL DRDO Def Met Res Lab, Def R&D, Hyderabad, India
关键词
HEA; machine learning; PHASE PREDICTION; SELECTION;
D O I
10.1080/10667857.2022.2046930
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-entropy alloys (HEAs) can have superior properties due to the intermetallic (IM) or solid solution (SS) phase formation. In this work, machine learning (ML) based models have been implemented to categorise and estimate the phase prediction in HEAs with the objective of appreciably enhancing the model accuracy. Various features, VEC, delta r, Delta chi, lambda, ohm, Delta S, Delta H, and T-melt, are considered. With correlation matrix, enthalpy is observed to be the least significant feature. These datasets were used as inputs to four various ML algorithms, where all these models were optimised by hyper parameter tuning. The Algorithms implemented are: Support Vector Machine (SVM), Logistic Regression, Decision Tree, Random Forest, Artificial Neural Network (ANN) and Gradient Boosting algorithm. Gradient Boosting has demonstrated the best performance of more than 90% accuracy for the given data. It is established that Gradient Boosting predictions are found to be in good match with experimental data.
引用
收藏
页码:2580 / 2587
页数:8
相关论文
共 50 条
  • [1] Machine Learning Design for High-Entropy Alloys: Models and Algorithms
    Liu, Sijia
    Yang, Chao
    METALS, 2024, 14 (02)
  • [2] Machine learning-based prediction of phases in high-entropy alloys
    Machaka, Ronald
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 188
  • [3] Ensemble-based machine learning models for phase prediction in high entropy alloys
    Mishra, Aayesha
    Kompella, Lakshminarayana
    Sanagavarapu, Lalit Mohan
    Varam, Sreedevi
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 210
  • [4] Accelerated Design for High-Entropy Alloys Based on Machine Learning and Multiobjective Optimization
    Ma, Yingying
    Li, Minjie
    Mu, Yongkun
    Wang, Gang
    Lu, Wencong
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (19) : 6029 - 6042
  • [5] Accelerating the design of high-entropy alloys with high hardness by machine learning based on particle swarm optimization
    Chen, Cun
    Ma, Leiying
    Zhang, Yong
    Liaw, Peter K.
    Ren, Jingli
    INTERMETALLICS, 2023, 154
  • [6] Explainable Machine Learning based approach for the design of new refractory high entropy alloys
    Swateelagna, Saswati
    Singh, Manish
    Rahul, M. R.
    INTERMETALLICS, 2024, 167
  • [7] A machine learning-based alloy design system to facilitate the rational design of high entropy alloys with enhanced hardness
    Yang, Chen
    Ren, Chang
    Jia, Yuefei
    Wang, Gang
    Li, Minjie
    Lu, Wencong
    ACTA MATERIALIA, 2022, 222
  • [8] The intrinsic strength prediction by machine learning for refractory high entropy alloys
    Yan, Yong-Gang
    Wang, Kun
    TUNGSTEN, 2023, 5 (04) : 531 - 538
  • [9] Improving phase prediction accuracy for high entropy alloys with Machine learning
    Risal, Sandesh
    Zhu, Weihang
    Guillen, Pablo
    Sun, Li
    COMPUTATIONAL MATERIALS SCIENCE, 2021, 192
  • [10] Machine Learning-Based Prediction of Complex Combination Phases in High-Entropy Alloys
    Thampiriyanon, Jirapracha
    Khumkoa, Sakhob
    METALS, 2025, 15 (03)