Development of machine learning based models for design of high entropy alloys

被引:8
|
作者
Bobbili, Ravindranadh [1 ]
Ramakrishna, B. [1 ]
Madhu, Vemuri [1 ]
机构
[1] DMRL DRDO Def Met Res Lab, Def R&D, Hyderabad, India
关键词
HEA; machine learning; PHASE PREDICTION; SELECTION;
D O I
10.1080/10667857.2022.2046930
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-entropy alloys (HEAs) can have superior properties due to the intermetallic (IM) or solid solution (SS) phase formation. In this work, machine learning (ML) based models have been implemented to categorise and estimate the phase prediction in HEAs with the objective of appreciably enhancing the model accuracy. Various features, VEC, delta r, Delta chi, lambda, ohm, Delta S, Delta H, and T-melt, are considered. With correlation matrix, enthalpy is observed to be the least significant feature. These datasets were used as inputs to four various ML algorithms, where all these models were optimised by hyper parameter tuning. The Algorithms implemented are: Support Vector Machine (SVM), Logistic Regression, Decision Tree, Random Forest, Artificial Neural Network (ANN) and Gradient Boosting algorithm. Gradient Boosting has demonstrated the best performance of more than 90% accuracy for the given data. It is established that Gradient Boosting predictions are found to be in good match with experimental data.
引用
收藏
页码:2580 / 2587
页数:8
相关论文
共 50 条
  • [1] Machine Learning Design for High-Entropy Alloys: Models and Algorithms
    Liu, Sijia
    Yang, Chao
    METALS, 2024, 14 (02)
  • [2] Ensemble-based machine learning models for phase prediction in high entropy alloys
    Mishra, Aayesha
    Kompella, Lakshminarayana
    Sanagavarapu, Lalit Mohan
    Varam, Sreedevi
    COMPUTATIONAL MATERIALS SCIENCE, 2022, 210
  • [3] Accelerated Design for High-Entropy Alloys Based on Machine Learning and Multiobjective Optimization
    Ma, Yingying
    Li, Minjie
    Mu, Yongkun
    Wang, Gang
    Lu, Wencong
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (19) : 6029 - 6042
  • [4] Explainable Machine Learning based approach for the design of new refractory high entropy alloys
    Swateelagna, Saswati
    Singh, Manish
    Rahul, M. R.
    INTERMETALLICS, 2024, 167
  • [5] Design of high bulk moduli high entropy alloys using machine learning
    Kandavalli, Manjunadh
    Agarwal, Abhishek
    Poonia, Ansh
    Kishor, Modalavalasa
    Ayyagari, Kameswari Prasada Rao
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [6] Design of high bulk moduli high entropy alloys using machine learning
    Manjunadh Kandavalli
    Abhishek Agarwal
    Ansh Poonia
    Modalavalasa Kishor
    Kameswari Prasada Rao Ayyagari
    Scientific Reports, 13
  • [7] Machine learning assisted design of high entropy alloys with desired property
    Wen, Cheng
    Zhang, Yan
    Wang, Changxin
    Xue, Dezhen
    Bai, Yang
    Antonov, Stoichko
    Dai, Lanhong
    Lookman, Turab
    Su, Yanjing
    ACTA MATERIALIA, 2019, 170 : 109 - 117
  • [8] Machine learning-based inverse design for single-phase high entropy alloys
    Zeng, Yingzhi
    Man, Mengren
    Ng, Chee Koon
    Wuu, Delvin
    Lee, Jing Jun
    Wei, Fengxia
    Wang, Pei
    Bai, Kewu
    Cheh Tan, Dennis Cheng
    Zhang, Yong-Wei
    APL MATERIALS, 2022, 10 (10)
  • [9] Accelerated design of high entropy alloys by integrating high throughput calculation and machine learning
    Bansal, Adarsh
    Kumar, Pankaj
    Yadav, Shubham
    Hariharan, V. S.
    Rahul, M. R.
    Phanikumar, Gandham
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 960
  • [10] Accelerating the design of high-entropy alloys with high hardness by machine learning based on particle swarm optimization
    Chen, Cun
    Ma, Leiying
    Zhang, Yong
    Liaw, Peter K.
    Ren, Jingli
    INTERMETALLICS, 2023, 154