DIFFERENTIAL STRUCTURE ON κ-MINKOWSKI SPACE, AND κ-POINCARE ALGEBRA

被引:32
作者
Meljanac, Stjepan [1 ]
Kresic-Juric, Sasa [2 ]
机构
[1] Rudjer Boskovic Inst, Zagreb 10000, Croatia
[2] Univ Split, Fac Nat & Math Sci, Split 21000, Croatia
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2011年 / 26卷 / 20期
关键词
kappa-Minkowski space; kappa-Poincare algebra; realizations; differential forms; RELATIVITY; REALIZATIONS; GRAVITY; TIME;
D O I
10.1142/S0217751X11053948
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
We construct realizations of the generators of the kappa-Minkowski space and kappa-Poincare algebra as formal power series in the h-adic extension of the Weyl algebra. The Hopf algebra structure of the kappa-Poincare algebra related to different realizations is given. We construct realizations of the exterior derivative and one-forms, and define a differential calculus on kappa-Minkowski space which is compatible with the action of the Lorentz algebra. In contrast to the conventional bicovariant calculus, the space of one-forms has the same dimension as the kappa-Minkowski space.
引用
收藏
页码:3385 / 3402
页数:18
相关论文
共 50 条