FWENet: a deep convolutional neural network for flood water body extraction based on SAR images

被引:35
作者
Wang, Jingming [1 ,2 ]
Wang, Shixin [1 ,2 ]
Wang, Futao [1 ,2 ,3 ]
Zhou, Yi [1 ,2 ]
Wang, Zhenqing [1 ,2 ]
Ji, Jianwan [4 ]
Xiong, Yibing [1 ,2 ]
Zhao, Qing [1 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Chinese Acad Sci, Hainan Res Inst, Aerosp Informat Res Inst, Sanya 572029, Peoples R China
[4] Suzhou Univ Sci & Technol, Sch Geog Sci & Geomat Engn, Suzhou, Peoples R China
关键词
Deep learning; flood water body extraction; SAR; Poyang Lake;
D O I
10.1080/17538947.2021.1995513
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
As one of the most severe natural disasters in the world, floods caused substantial economic losses and casualties every year. Timely and accurate acquisition of flood inundation extent could provide technical support for relevant departments in the field of flood emergency response and disaster relief. Given the accuracy of existing research works extracting flood inundation extent based on Synthetic Aperture Radar (SAR) images and deep learning methods is relatively low, this study utilized Sentinel-1 SAR images as the data source and proposed a novel model named flood water body extraction convolutional neural network (FWENet) for flood information extraction. Then three classical semantic segmentation models (UNet, Deeplab v3 and UNet++) and two traditional water body extraction methods (Otsu global thresholding method and Object-Oriented method) were compared with the FWENet model. Furthermore, this paper analyzed the water body area change situations of Poyang Lake. The main results of this paper were as follows: Compared with other five water body extraction methods, the FWENet model achieved the highest water body extraction accuracy, its F1 score and mean intersection over union (mIoU) were 0.9871 and 0.9808, respectively. This study could guarantee the subsequent research on flood extraction based on SAR images.
引用
收藏
页码:345 / 361
页数:17
相关论文
共 50 条
  • [31] Deep convolutional neural networks for ATR from SAR imagery
    Morgan, David A. E.
    ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXII, 2015, 9475
  • [32] Synergistic Use of Geospatial Data for Water Body Extraction from Sentinel-1 Images for Operational Flood Monitoring across Southeast Asia Using Deep Neural Networks
    Kim, Junwoo
    Kim, Hwisong
    Jeon, Hyungyun
    Jeong, Seung-Hwan
    Song, Juyoung
    Vadivel, Suresh Krishnan Palanisamy
    Kim, Duk-jin
    REMOTE SENSING, 2021, 13 (23)
  • [33] Classifying Malware Traffic Using Images and Deep Convolutional Neural Network
    Davis Jr, R. E.
    Xu, Jingsheng
    Roy, Kaushik
    IEEE ACCESS, 2024, 12 : 58031 - 58038
  • [34] Deep Convolutional Neural Network Feature Extraction for Berry Trees Classification
    Villaruz, Jolitte A.
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2021, 12 (03) : 226 - 233
  • [35] Obtaining Super-Resolution Satellites Images Based on Enhancement Deep Convolutional Neural Network
    Hatem Magdy Keshk
    Xu-Cheng Yin
    International Journal of Aeronautical and Space Sciences, 2021, 22 : 195 - 202
  • [36] Automatic detection of blood content in capsule endoscopy images based on a deep convolutional neural network
    Aoki, Tomonori
    Yamada, Atsuo
    Kato, Yusuke
    Saito, Hiroaki
    Tsuboi, Akiyoshi
    Nakada, Ayako
    Niikura, Ryota
    Fujishiro, Mitsuhiro
    Oka, Shiro
    Ishihara, Soichiro
    Matsuda, Tomoki
    Nakahori, Masato
    Tanaka, Shinji
    Koike, Kazuhiko
    Tada, Tomohiro
    JOURNAL OF GASTROENTEROLOGY AND HEPATOLOGY, 2020, 35 (07) : 1196 - 1200
  • [37] Obtaining Super-Resolution Satellites Images Based on Enhancement Deep Convolutional Neural Network
    Keshk, Hatem Magdy
    Yin, Xu-Cheng
    INTERNATIONAL JOURNAL OF AERONAUTICAL AND SPACE SCIENCES, 2021, 22 (01) : 195 - 202
  • [38] Deep Convolutional Neural Network for Accurate Classification of Myofibroblastic Lesions on Patch-Based Images
    Giraldo-Roldan, Daniela
    dos Santos, Giovanna Calabrese
    Araujo, Anna Luiza Damaceno
    Nakamura, Thais Cerqueira Reis
    Pulido-Diaz, Katya
    Lopes, Marcio Ajudarte
    Santos-Silva, Alan Roger
    Kowalski, Luiz Paulo
    Moraes, Matheus Cardoso
    Vargas, Pablo Agustin
    HEAD & NECK PATHOLOGY, 2024, 18 (01)
  • [39] Deep Convolutional Neural Network Based Analysis of Liver Tissues Using Computed Tomography Images
    Nisa, Mehrun
    Buzdar, Saeed Ahmad
    Khan, Khalil
    Ahmad, Muhammad Saeed
    SYMMETRY-BASEL, 2022, 14 (02):
  • [40] SAR Automatic Target Recognition Based on Deep Convolutional Neural Networks
    Zhan, Rong-hui
    Tian, Zhuang-zhuang
    Hu, Jie-min
    Zhang, Jun
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE: TECHNIQUES AND APPLICATIONS, AITA 2016, 2016, : 170 - 178