Superconvergence analysis of Galerkin method for semilinear parabolic integro-differential equation

被引:5
|
作者
Yang, Huaijun [1 ]
机构
[1] Zhengzhou Univ Aeronaut, Sch Math, Zhengzhou 450046, Peoples R China
基金
中国国家自然科学基金;
关键词
Semilinear parabolic; integro-differential equation; A linearized numerical scheme; Superconvergence error estimate; FINITE-ELEMENT METHODS;
D O I
10.1016/j.aml.2021.107872
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, based on the bilinear element used for spatial discretization and a linearized backward Euler scheme used for temporal discretization, the superconvergence error estimate is derived for semilinear parabolic integro-differential equation without certain time-step restrictions. The key is to derive a uniform boundness of the numerical solution in energy norm under the weaker assumption compared to previous literatures for nonlinear term. Numerical results are presented to confirm the correctness of the theoretical analysis. (c) 2021 Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] An hp-local Discontinuous Galerkin Method for Parabolic Integro-Differential Equations
    Pani, Amiya K.
    Yadav, Sangita
    JOURNAL OF SCIENTIFIC COMPUTING, 2011, 46 (01) : 71 - 99
  • [2] Galerkin method applied to telegraph integro-differential equation with a weighted integral condition
    Guezane-Lakoud, A.
    Bendjazia, N.
    Khaldi, R.
    BOUNDARY VALUE PROBLEMS, 2013,
  • [3] Galerkin method applied to telegraph integro-differential equation with a weighted integral condition
    A Guezane-Lakoud
    N Bendjazia
    R Khaldi
    Boundary Value Problems, 2013
  • [4] A second-order accurate numerical method for a semilinear integro-differential equation with a weakly singular kernel
    Mustapha, Kassem
    Mustapha, Hussein
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2010, 30 (02) : 555 - 578
  • [5] Discontinuous Galerkin method for an integro-differential equation modeling dynamic fractional order viscoelasticity
    Larsson, Stig
    Racheva, Milena
    Saedpanah, Fardin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 283 : 196 - 209
  • [6] Numerical Analysis of Direct and Inverse Problems for a Fractional Parabolic Integro-Differential Equation
    Koleva, Miglena N.
    Vulkov, Lubin G.
    FRACTAL AND FRACTIONAL, 2023, 7 (08)
  • [7] Determination of a Multidimensional Kernel in Some Parabolic Integro-differential Equation
    Durdiev, Durdimurod K.
    Nuriddinov, Zhavlon Z.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2021, 14 (01): : 117 - 127
  • [8] HDG method for linear parabolic integro-Differential equations
    Jain, Riya
    Pani, Amiya K.
    Yadav, Sangita
    APPLIED MATHEMATICS AND COMPUTATION, 2023, 450
  • [9] ON DETERMINATION OF THE COEFFICIENT AND KERNEL IN AN INTEGRO-DIFFERENTIAL EQUATION OF PARABOLIC TYPE
    Durdiev, D. K.
    Zhumaev, Zh. Zh
    EURASIAN JOURNAL OF MATHEMATICAL AND COMPUTER APPLICATIONS, 2023, 11 (01): : 49 - 65
  • [10] HDG Method for Nonlinear Parabolic Integro-Differential Equations
    Jain, Riya
    Yadav, Sangita
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2025, 25 (01) : 115 - 131