Companion inequalities to Ostrowski-Gruss type inequality and applications

被引:4
作者
Awan, Khalid Mahmood [1 ]
Pecaric, Josip [2 ]
Penava, Mihaela Ribicic [3 ]
机构
[1] Univ Sargodha, Dept Math, Sargodha, Pakistan
[2] Univ Zagreb, Fac Text Technol, Zagreb 41000, Croatia
[3] Univ Osijek, Dept Math, Osijek, Croatia
关键词
Chebyshev functional; Ostrowski-Gruss type inequality;
D O I
10.3906/mat-1404-27
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to give some companion inequalities to the Ostrowski-Gruss type inequality for n-time differentiable absolutely continuous functions by using recently obtained bounds for the Chebyshev functional.
引用
收藏
页码:228 / 234
页数:7
相关论文
共 9 条
[1]   SHARP INTEGRAL INEQUALITIES BASED ON GENERAL TWO-POINT FORMULAE VIA AN EXTENSION OF MONTGOMERY'S IDENTITY [J].
Aljinovic, A. Aglic ;
Pecaric, J. ;
Penava, M. Ribicic .
ANZIAM JOURNAL, 2009, 51 (01) :67-101
[2]  
Aljinovic AA, 2013, MONOGRAPHS INEQUALIT, V5
[3]   SOME NEW OSTROWSKI-TYPE BOUNDS FOR THE CEBYSEV FUNCTIONAL AND APPLICATIONS [J].
Cerone, P. ;
Dragomir, S. S. .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (01) :159-170
[4]  
Dragomir SS, 2002, RGMIA S, V5
[5]  
Dragomir SS, 2004, FACTA U SER MATH INF, V19, P1
[6]  
Franic I, 2011, EULER INTEGRAL IDENT
[7]   Improvement and further generalization of inequalities of Ostrowski-Gruss type [J].
Matic, M ;
Pecaric, J ;
Ujevic, N .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2000, 39 (3-4) :161-175
[8]  
Ostrowski A., 1937, Comment. Math. Helv., V10, P226, DOI [10.1007/BF01214290, DOI 10.1007/BF01214290, 10.1134/S0001434610010049, DOI 10.1134/S0001434610010049]
[9]  
Pecaric J. E., 1993, Classical and New Inequalities in Analysis