Redox system expression in the motor neurons in amyotrophic lateral sclerosis (ALS): immunohistochemical studies on sporadic ALS, superoxide dismutase 1 (SOD1)-mutated familial ALS, and SOD1-mutated ALS animal models

被引:50
|
作者
Kato, S
Kato, M
Abe, Y
Matsumura, T
Nishino, T
Aoki, M
Itoyama, Y
Asayama, K
Awaya, A
Hirano, A
Ohama, E
机构
[1] Tottori Univ, Fac Med, Inst Neurol Sci, Dept Neuropathol, Yonago, Tottori 6838504, Japan
[2] Nippon Med Coll, Dept Biochem & Mol Biol, Tokyo 113, Japan
[3] Tottori Univ Hosp, Div Pathol, Yonago, Tottori, Japan
[4] Tohoku Univ, Grad Sch Med, Dept Neurosci, Div Neurol, Sendai, Miyagi 980, Japan
[5] Univ Occupat & Environm Hlth, Dept Pediat, Kitakyushu, Fukuoka 807, Japan
[6] Japan Sci & Technol Agcy, Tachikawa, Japan
[7] Montefiore Med Ctr, Dept Pathol, Div Neuropathol, Bronx, NY 10467 USA
关键词
amyotrophic lateral sclerosis; peroxiredoxin-11; glutathione peroxidase-1; redox system;
D O I
10.1007/s00401-005-1019-3
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Peroxiredoxin-LL (Prxll) and glutathione peroxidase-l (GPxl) are regulators of the redox system that is one of the most crucial supporting systems in neurons. This system is an antioxidant enzyme defense system and is synchronously linked to other important cell supporting systems. To clarify the common self-survival mechanism of the residual motor neurons affected by amyotrophic lateral sclerosis (ALS), we examined motor neurons from 40 patients with sporadic ALS (SALS) and 5 patients with superoxide dismutase 1 (SOD1)-mutated familial ALS (FALS) from two different families (frame-shift 126 mutation and A4 V) as well as four different strains of the SOD1-mutated ALS models (H46R/G93A rats and G1H/G1L-G93A mice). We investigated the immunohistochemical expression of Prxll/GPxl in motor neurons from the viewpoint of the redox system. In normal subjects, Prxll/GPxl immunoreactivity in the anterior horns of the normal spinal cords of humans, rats and mice was primarily identified in the neurons: cytoplasmic staining was observed in almost all of the motor neurons. Histologically, the number of spinal motor neurons in ALS decreased with disease progression. Immunohistochemically, the number of neurons negative for Prxll/GPxl increased with ALS disease progression. Some residual motor neurons coexpressing Prxll/GPxl were, however, observed throughout the clinical courses in some cases of SALS patients, SOD1-mutated FALS patients, and ALS animal models. In particular, motor neurons overexpressing Prxll/GPxl, i.e., neurons showing redox system up-regulation, were commonly evident during the clinical courses in ALS. For patients with SALS, motor neurons overexpressing Prxll/GPx1 were present mainly within approximately 3 years after disease onset, and these overexpressing neurons thereafter decreased in number dramatically as the disease progressed. For SOD1-mutated FALS patients, like in SALS patients, certain residual motor neurons without inclusions also overexpressed Prxll/GPxl in the short-term-surviving FALS patients. In the ALS animal models, as in the human diseases, certain residual motor neurons showed overexpression of Prxll/GPxl during their clinical courses. At the terminal stage of ALS, however, a disruption of this common Prxll/GPx1-overexpression mechanism in neurons was observed. These findings lead us to the conclusion that the residual ALS neurons showing redox system up-regulation would be less susceptible to ALS stress and protect themselves from ALS neuronal death, whereas the breakdown of this redox system at the advanced disease stage accelerates neuronal degeneration and/or the process of neuronal death.
引用
收藏
页码:101 / 112
页数:12
相关论文
共 50 条
  • [21] SOD1 mRNA expression in sporadic amyotrophic lateral sclerosis
    Gagliardi, Stella
    Cova, Emanuela
    Davin, Annalisa
    Guareschi, Stefania
    Abel, Kenneth
    Alvisi, Elena
    Laforenza, Umberto
    Ghidoni, Roberta
    Cashman, John Richard
    Ceroni, Mauro
    Cereda, Cristina
    NEUROBIOLOGY OF DISEASE, 2010, 39 (02) : 198 - 203
  • [22] MCP-1/CCR2 signaling-mediated astrocytosis is accelerated in a transgenic mouse model of SOD1-mutated familial ALS
    Kawaguchi-Niida, Motoko
    Yamamoto, Tomoko
    Kato, Yoichiro
    Inose, Yuri
    Shibata, Noriyuki
    ACTA NEUROPATHOLOGICA COMMUNICATIONS, 2013, 1
  • [23] NLRP3 Inflammasome Is Expressed by Astrocytes in the SOD1 Mouse Model of ALS and in Human Sporadic ALS Patients
    Johann, Sonja
    Heitzer, Marius
    Kanagaratnam, Mithila
    Goswami, Anand
    Rizo, Tania
    Weis, Joachim
    Troost, Dirk
    Beyer, Cordian
    GLIA, 2015, 63 (12) : 2260 - 2273
  • [24] Role of mutant SOD1 disulfide oxidation and aggregation in the pathogenesis of familial ALS
    Karch, Celeste M.
    Prudencio, Mercedes
    Winkler, Duane D.
    Hart, P. John
    Borchelt, David R.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (19) : 7774 - 7779
  • [25] Modeling ALS with iPSCs Reveals that Mutant SOD1 Misregulates Neurofilament Balance in Motor Neurons
    Chen, Hong
    Qian, Kun
    Du, Zhongwei
    Cao, Jingyuan
    Petersen, Andrew
    Liu, Huisheng
    Blackbourn, Lisle W.
    Huang, CindyTzu-Ling
    Errigo, Anthony
    Yin, Yingnan
    Lu, Jianfeng
    Ayala, Melvin
    Zhang, Su-Chun
    CELL STEM CELL, 2014, 14 (06) : 796 - 809
  • [26] Aggressive familial ALS with unusual brain MRI and a SOD1 gene mutation
    Blumen, Sergiu C.
    Inzelberg, Rivka
    Nisipeanu, Puiu
    Carasso, Ralph L.
    Oved, Daniel
    Aizenstein, Orna
    Drory, Vivian E.
    Bergstrom, Christina
    Andersen, Peter M.
    AMYOTROPHIC LATERAL SCLEROSIS, 2010, 11 (1-2): : 228 - 231
  • [27] Identity by descent analysis identifies founder events and links SOD1 familial and sporadic ALS cases
    Henden, Lyndal
    Twine, Natalie A.
    Szul, Piotr
    McCann, Emily P.
    Nicholson, Garth A.
    Rowe, Dominic B.
    Kiernan, Matthew C.
    Bauer, Denis C.
    Blair, Ian P.
    Williams, Kelly L.
    NPJ GENOMIC MEDICINE, 2020, 5 (01)
  • [28] Screening of the SOD1, FUS, TARDBP, ANG, and OPTN mutations in Korean patients with familial and sporadic ALS
    Kwon, Min-Jung
    Baek, Wonki
    Ki, Chang-Seok
    Kim, Hyun Young
    Koh, Seong-Ho
    Kim, Jong-Won
    Kim, Seung Hyun
    NEUROBIOLOGY OF AGING, 2012, 33 (05)
  • [29] Distinct conformers of transmissible misfolded SOD1 distinguish human SOD1-FALS from other forms of familial and sporadic ALS
    Ayers, Jacob I.
    Diamond, Jeffrey
    Sari, Adriana
    Fromholt, Susan
    Galaleldeen, Ahmad
    Ostrow, Lyle W.
    Glass, Jonathan D.
    Hart, P. John
    Borchelt, David R.
    ACTA NEUROPATHOLOGICA, 2016, 132 (06) : 827 - 840
  • [30] A novel SOD1 splice site mutation associated with familial ALS revealed by SOD activity analysis
    Birve, Anna
    Neuwirth, Christoph
    Weber, Markus
    Marklund, Stefan L.
    Nilsson, Ann-Charloth
    Jonsson, Per Andreas
    Andersen, Peter M.
    HUMAN MOLECULAR GENETICS, 2010, 19 (21) : 4201 - 4206