A continuity method for sweeping processes

被引:21
作者
Recupero, Vincenzo [1 ]
机构
[1] Politecn Torino, Dipartimento Matemat, I-10129 Turin, Italy
关键词
Differential inclusions; Sweeping processes; Rate independence; BV SOLUTIONS;
D O I
10.1016/j.jde.2011.06.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the existence and uniqueness of BV continuous sweeping processes can be easily reduced to the Lipschitz continuous case by means of a suitable reparametrization of the associated moving convex set. Moreover we put this approach in the wider framework of rate independent operators acting on curves in metric spaces and we prove an extension theorem for such operators. This abstract theorem is then applied in order to infer continuous dependence of the sweeping process on the data. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:2125 / 2142
页数:18
相关论文
共 19 条
  • [1] Aliprantis C., 2006, INFINITE DIMENSIONAL
  • [2] AMBROSIO L., 2005, LEC MATH
  • [3] [Anonymous], 1973, N HOLLAND MATH STUD
  • [4] [Anonymous], 1981, Bull. Fac. Educ. Chiba Univ., V30, P1
  • [5] Brokate M., 1996, APPL MATH SCI, V121
  • [6] Dinculeanu N., 1967, INT SER MONOGR PURE, V95
  • [7] Doob J. L., 1994, Measure Theory
  • [8] BV solutions of nonconvex sweeping process differential inclusion with perturbation
    Edmond, Jean Fenel
    Thibault, Lionel
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2006, 226 (01) : 135 - 179
  • [9] Federer H., 1969, Geometric Measure Theory. Classics in Mathematics
  • [10] Gariepy R., 1995, MODERN REAL ANAL