Sharpness of embeddings in logarithmic Bessel-potential spaces

被引:45
作者
Edmunds, DE
Gurka, P
Opic, B
机构
[1] PRAGUE AGR UNIV, DEPT MATH, PRAGUE 16021 6, CZECH REPUBLIC
[2] ACAD SCI CZECH REPUBL, INST MATH, CR-11567 PRAGUE 1, CZECH REPUBLIC
关键词
D O I
10.1017/S0308210500023210
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is a continuation of [4], where embeddings of certain logarithmic Bessel-potential spaces (modelled upon generalised Lorentz-Zygmund spaces) in appropriate Orlicz spaces (with Young functions of single and double exponential type) were derived. The aim of this paper is to show that these embedding results are sharp in the sense of [8].
引用
收藏
页码:995 / 1009
页数:15
相关论文
共 14 条
[1]   A SHARP INEQUALITY OF MOSER,J. FOR HIGHER-ORDER DERIVATIVES [J].
ADAMS, DR .
ANNALS OF MATHEMATICS, 1988, 128 (02) :385-398
[2]  
BENNETT C, 1980, DISS MATH, V175
[3]  
Bennett C., 1988, PURE APPL MATH, V129
[4]  
EDMUNDS DE, 1995, STUD MATH, V115, P151
[5]  
EDMUNDS DE, 1995, HOUSTON J MATH, V21, P119
[6]  
FUGLEDE B, 1960, MAT FYS MEDD DAN VID, V33, P1
[7]  
FUSCO N, 1993, SOME REMARKS SOBOLEV
[8]  
Hempel J.A., 1970, Bull. Aust. Math. Soc., V3, P369, DOI DOI 10.1017/S0004972700046074
[9]  
Kufner A., 1977, Function Spaces
[10]  
Lorentz GG., 1951, Pacific J. Math., V1, P411, DOI [10.2140/pjm.1951.1.411, DOI 10.2140/PJM.1951.1.411]