The High Flux of Superhydrophilic-Superhydrophobic Janus Membrane of cPVA-PVDF/PMMA/GO by Layer-by-Layer Electrospinning for High Efficiency Oil-Water Separation

被引:40
|
作者
Wu, Han [1 ]
Shi, Jia [1 ]
Ning, Xin [1 ]
Long, Yun-Ze [1 ,2 ]
Zheng, Jie [1 ]
机构
[1] Qingdao Univ, Shandong Ctr Engn Nonwovens, Coll Text & Clothing, Ind Res Inst Nonwovens & Tech Text, Qingdao 266071, Peoples R China
[2] Qingdao Univ, Coll Phys, Collaborat Innovat Ctr Nanomat & Devices, Qingdao 266071, Peoples R China
基金
中国国家自然科学基金;
关键词
oil-water separation; Janus membrane; electrospun nanofiber; superhydrophobic; NANOFIBERS; WETTABILITY; CAPILLARY; TRANSPORT; DESIGN; FILMS;
D O I
10.3390/polym14030621
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
A simple and novel strategy of superhydrophilic-superhydrophobic Janus membrane was provided here to deal with the increasingly serious oil-water separation problem, which has a very bad impact on environmental pollution and resource recycling. The Janus membrane of cPVA-PVDF/PMMA/GO with opposite hydrophilic and hydrophobic properties was prepared by layer-by-layer electrospinning. The structure of the Janus membrane is as follows: firstly, the mixed solution of polyvinylidene fluoride (PVDF), polymethylmethacrylate (PMMA) and graphene oxide (GO) was electrospun to form a hydrophobic layer, then polyvinyl alcohol (PVA) nanofiber was coated onto the hydrophobic membrane by layer-by-layer electrospinning to form a composite membrane, and finally, the composite membrane was crosslinked to obtain a Janus membrane. The addition of GO can significantly improve the hydrophobicity, mechanical strength and stability of the Janus membrane. In addition, the prepared Janus membrane still maintained good oil-water separation performance and its separation efficiency almost did not decrease after many oil-water separation experiments. The flux in the process of oil-water separation can reach 1909.9 L m(-2) h(-1), and the separation efficiency can reach 99.9%. This not only proves the separation effect of the nanocomposite membrane, but also shows its high stability and recyclability. The asymmetric Janus membrane shows good oil-water selectivity, which gives Janus membrane broad application prospects in many fields.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Electrospinning superhydrophobic-superoleophilic PVDF-SiO2 nanofibers membrane for oil-water separation
    Jiang, Shan
    Meng, Xiangfei
    Chen, Binling
    Wang, Nannan
    Chen, Guangkai
    JOURNAL OF APPLIED POLYMER SCIENCE, 2020, 137 (47)
  • [2] Fabrication of ZnO/PDA/GO composite membrane for high efficiency oil-water separation
    Ding, Jijun
    Mao, Zhicheng
    Chen, Haixia
    Zhang, Xin
    Fu, Haiwei
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2023, 129 (05):
  • [3] Electrospinning superhydrophobic-superoleophilic fibrous PVDF membranes for high-efficiency water-oil separation
    Zhou, Zhengping
    Wu, Xiang-Fa
    MATERIALS LETTERS, 2015, 160 : 423 - 427
  • [4] Opposite and complementary: a superhydrophobic-superhydrophilic integrated system for high-flux, high-efficiency and continuous oil/water separation
    Liu, Jing
    Wang, Li
    Guo, Fengyun
    Hou, Lanlan
    Chen, Yuee
    Liu, Jingchong
    Wang, Nu
    Zhao, Yong
    Jiang, Lei
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (12) : 4365 - 4370
  • [5] Hydrolyzed OTS modified PVDF nanofibrous membrane for oil-water mixture high-efficiency separation
    Li, Wangliang
    Dansawad, Panchan
    Han, Li
    Gao, Haigang
    Zhao, Shengyong
    Xue, Cong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 361
  • [6] Fluorine-free superhydrophobic PET fabric with high oil flux for oil-water separation
    Huang, Gang
    Huo, Liang
    Jin, Yikai
    Yuan, Shuaijie
    Zhao, Ruixi
    Zhao, Jing
    Li, Zhengrong
    Li, Yangling
    PROGRESS IN ORGANIC COATINGS, 2022, 163
  • [7] Conductive superhydrophobic cotton fabrics via layer-by-layer assembly of carbon nanotubes for oil-water separation and human motion detection
    Zheng, Longzhu
    Su, Xiaojing
    Lai, Xuejun
    Chen, Wanjuan
    Li, Hongqiang
    Zeng, Xingrong
    MATERIALS LETTERS, 2019, 253 : 230 - 233
  • [8] Novel superhydrophilic nanofiber membranes with high flux and durability enable multifunctional oil-water separation
    Dou, Anqi
    Cao, Ning
    Wang, Yan
    Wu, Liangyu
    Sui, Yushu
    Liu, Yixuan
    Tong, Xin
    Chen, Ning
    Chen, Dongru
    Miao, Qiuyu
    Zhu, Zhihao
    Guo, Xiaorui
    Tang, Zhonghua
    Pang, Jinhui
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 364
  • [9] High-strength, superhydrophilic/underwater superoleophobic multifunctional ceramics for high efficiency oil-water separation and water purification
    Jin, Z.
    Mei, H.
    Liu, H.
    Pan, L.
    Yan, Y.
    Cheng, L.
    MATERIALS TODAY NANO, 2022, 18
  • [10] Preparation of a PVDF-PDA-DETA@PVP@HNT membrane for high efficiency oil-water emulsion separation
    Dai, Lijuan
    Du, Guoyong
    Yuan, Qiao
    Deng, Chunping
    Zhang, Huatao
    Ma, Wenxin
    NEW JOURNAL OF CHEMISTRY, 2024, 48 (09) : 3899 - 3909