Block-iterative algorithms for solving convex feasibility problems in Hilbert and in Banach spaces

被引:58
作者
Aleyner, Arkady [1 ]
Reich, Simeon [1 ]
机构
[1] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
基金
以色列科学基金会;
关键词
block-iterative algorithmic scheme; common fixed point; nonexpansive mapping; relaxation method;
D O I
10.1016/j.jmaa.2008.01.087
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish convergence theorems for two different block-iterative methods for solving the problem of finding a point in the intersection of the fixed point sets of a finite number of nonexpansive mappings in Hilbert and in finite-dimensional Banach spaces, respectively. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:427 / 435
页数:9
相关论文
共 16 条
[1]   BLOCK-ITERATIVE PROJECTION METHODS FOR PARALLEL COMPUTATION OF SOLUTIONS TO CONVEX FEASIBILITY PROBLEMS [J].
AHARONI, R ;
CENSOR, Y .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1989, 120 :165-180
[2]   Projection algorithms for solving convex feasibility problems [J].
Bauschke, HH ;
Borwein, JM .
SIAM REVIEW, 1996, 38 (03) :367-426
[3]  
Bruck RE, 1977, HOUSTON J MATH, V3, P459
[4]   Stable Convergence Behavior Under Summable Perturbations of a Class of Projection Methods for Convex Feasibility and Optimization Problems [J].
Butnariu, Dan ;
Davidi, Ran ;
Herman, Gabor T. ;
Kazantsev, Ivan G. .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2007, 1 (04) :540-547
[5]   ROW-ACTION METHODS FOR HUGE AND SPARSE SYSTEMS AND THEIR APPLICATIONS [J].
CENSOR, Y .
SIAM REVIEW, 1981, 23 (04) :444-446
[6]  
Censor Y., 1997, PARALLEL OPTIMIZATIO
[7]  
Cimmino G, 1938, RIC SCI PROGR TECN E, V1, P326
[8]   Solving monotone inclusions via compositions of nonexpansive averaged operators [J].
Combettes, PL .
OPTIMIZATION, 2004, 53 (5-6) :475-504
[9]  
COMBETTES PL, 1995, CR ACAD SCI I-MATH, V320, P1385
[10]  
Combettes PL, 1997, APPL MATH OPT, V35, P311