A Quasi-Double-Layer Solid Electrolyte with Adjustable Interphases Enabling High-Voltage Solid-State Batteries

被引:93
作者
Pan, Jun [1 ]
Zhang, Yuchen [2 ]
Wang, Jian [3 ]
Bai, Zhongchao [4 ]
Cao, Ruiguo [2 ]
Wang, Nana [5 ]
Dou, Shixue [5 ]
Huang, Fuqiang [1 ,6 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Ceram, State Key Lab High Performance Ceram & Superfine, Shanghai 200050, Peoples R China
[2] Univ Sci & Technol China, CAS, Key Lab Mat Energy Convers, Hefei Natl Lab Phys Sci Microscale,Dept Mat Sci &, Hefei 230026, Peoples R China
[3] ShanghaiTech Univ, Sch Life Sci & Technol, Shanghai 200050, Peoples R China
[4] Shandong Univ Sci & Technol, Coll Mech & Elect Engn, Qingdao 266590, Peoples R China
[5] Univ Wollongong, Australian Inst Innovat Mat, Inst Superconducting & Elect Mat, Innovat Campus, North Wollongong, NSW 2500, Australia
[6] Peking Univ, Coll Chem & Mol Engn, State Key Lab Rare Earth Mat Chem & Applicat, Beijing 100871, Peoples R China
基金
澳大利亚研究理事会;
关键词
artificial cathode electrolyte interface; high redox stability; polymer solid-state lithium-ion batteries; quasi-double-layer solid electrolytes; stable interfacial contact; POLYMER ELECTROLYTE; LITHIUM; SUCCINONITRILE; GRAPHITE;
D O I
10.1002/adma.202107183
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Increasing the energy density and long-term cycling stability of lithium-ion batteries necessitates the stability of electrolytes under high/low voltage application and stable electrode/electrolyte interfacial contact. However, neither a single polymer nor liquid electrolyte can realize this due to their limited internal energy gap, which cannot avoid lithium-metal deposition and electrolyte oxidation simultaneously. Herein, a novel type of quasi-double-layer composite polymer electrolytes (QDL-CPEs) is proposed by using plasticizers with high oxidation stability (propylene carbonate) and high reduction stability (diethylene glycol dimethyl ether) in a poly(vinylidene fluoride) (PVDF)-based electrolyte composites. In-situ-polymerized propylene carbonate can function as a cathode electrolyte interface (CEI) film, which can enhance the antioxidant ability. The nucleophilic substitution reaction between diethylene glycol dimethyl ether and PVDF increases the reduction stability of the electrolyte on the anodic side, without the formation of lithium dendrites. The QDL-CPEs has high ionic conductivity, an enhanced electrochemical reaction window, adjustable electrode/electrolyte interphases, and no additional electrolyte-electrolyte interfacial resistance. Thus, this ingenious design of the QDL-CPEs improves the cycling performance of a fabricated LiNi0.8Co0.1Mn0.1O2 (NCM811)//QDL-CPEs//hard carbon full cell at room temperature, paving a new way for designing solid-state battery systems accessible for practical applications.
引用
收藏
页数:9
相关论文
共 53 条
[1]   The plastic-crystalline phase of succinonitrile as a universal matrix for solid-state ionic conductors [J].
Alarco, PJ ;
Abu-Lebdeh, Y ;
Abouimrane, A ;
Armand, M .
NATURE MATERIALS, 2004, 3 (07) :476-481
[2]   Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries [J].
Assat, Gaurav ;
Tarascon, Jean-Marie .
NATURE ENERGY, 2018, 3 (05) :373-386
[3]   A General Strategy of Anion-Rich High-Concentration Polymeric Interlayer for High-Voltage, All-Solid-State Batteries [J].
Bae, Jiwoong ;
Zhang, Xiao ;
Guo, Xuelin ;
Yu, Guihua .
NANO LETTERS, 2021, 21 (02) :1184-1191
[4]   LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li-S batteries [J].
Bag, Sourav ;
Zhou, Chengtian ;
Kim, Patrick J. ;
Pol, Vilas G. ;
Thangadurai, Venkataraman .
ENERGY STORAGE MATERIALS, 2020, 24 :198-207
[5]   Stable Seamless Interfaces and Rapid Ionic Conductivity of Ca-CeO2/LiTFSI/PEO Composite Electrolyte for High-Rate and High-Voltage All-Solid-State Battery [J].
Chen, Hao ;
Adekoya, David ;
Hencz, Luke ;
Ma, Jun ;
Chen, Su ;
Yan, Cheng ;
Zhao, Huijun ;
Cui, Guanglei ;
Zhang, Shanqing .
ADVANCED ENERGY MATERIALS, 2020, 10 (21)
[6]   Upgrading Electrode/Electrolyte Interphases via Polyamide-Based Quasi-Solid Electrolyte for Long-Life Nickel-Rich Lithium Metal Batteries [J].
Chen, Minjian ;
Ma, Cheng ;
Ding, Zhengping ;
Zhou, Liangjun ;
Chen, Libao ;
Gao, Peng ;
Wei, Weifeng .
ACS ENERGY LETTERS, 2021, 6 (04) :1280-1289
[7]   Approaching Practically Accessible Solid-State Batteries: Stability Issues Related to Solid Electrolytes and Interfaces [J].
Chen, Rusong ;
Li, Qinghao ;
Yu, Xiqian ;
Chen, Liquan ;
Li, Hong .
CHEMICAL REVIEWS, 2020, 120 (14) :6820-6877
[8]   Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework [J].
Chen, Xinzhi ;
He, Wenjun ;
Ding, Liang-Xin ;
Wang, Suqing ;
Wang, Haihui .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (03) :938-944
[9]   Recent progress in all-solid-state lithium batteries: The emerging strategies for advanced electrolytes and their interfaces [J].
Chen, Yong ;
Wen, Kaihua ;
Chen, Tianhua ;
Zhang, Xiaojing ;
Armand, Michel ;
Chen, Shimou .
ENERGY STORAGE MATERIALS, 2020, 31 :401-433
[10]   Stabilizing polymer electrolytes in high-voltage lithium batteries [J].
Choudhury, Snehashis ;
Tu, Zhengyuan ;
Nijamudheen, A. ;
Zachman, Michael J. ;
Stalin, Sanjuna ;
Deng, Yue ;
Zhao, Qing ;
Vu, Duylinh ;
Kourkoutis, Lena F. ;
Mendoza-Cortes, Jose L. ;
Archer, Lynden A. .
NATURE COMMUNICATIONS, 2019, 10 (1)