Quasilinear evolutionary equations and continuous interpolation spaces

被引:61
作者
Clément, P
Londen, SO [1 ]
Simonett, G
机构
[1] Aalto Univ, Inst Math, FIN-02150 Espoo, Finland
[2] Delft Univ Technol, Dept Math & Informat, NL-2600 GA Delft, Netherlands
[3] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
关键词
abstract parabolic equations; continuous interpolation spaces; quasilinear evolutionary equations; maximal regularity;
D O I
10.1016/j.jde.2003.07.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we analyze the abstract parabolic evolutionary equations D-t(alpha)(u - x) + A(u)u =f (u) + h(t), u(0) = x, in continuous interpolation spaces allowing a singularity as tdown arrow0. Here D-t(alpha) denotes the time-derivative of order alpha is an element of (0, 2). We first give a treatment of fractional derivatives in the spaces L-p((0, T); X) and then consider these derivatives in spaces of continuous functions having (at most) a prescribed singularity as tdown arrow0. The corresponding trace spaces are characterized and the dependence on alpha is demonstrated. Via maximal regularity results on the linear equation D-t(alpha)(u - x) + Au =f, u(0) = x, we arrive at results on existence, uniqueness and continuation on the quasilinear equation. Finally, an example is presented. (C) 2003 Elsevier Inc. All rights reserved.
引用
收藏
页码:418 / 447
页数:30
相关论文
共 20 条
[1]  
Amann H., 1995, Abstract Linear Theory, Monographs inMathematics, V89, DOI DOI 10.1007/978-3-0348-9221-6
[2]   NONLINEAR ANALYTIC SEMIFLOWS [J].
ANGENENT, SB .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1990, 115 :91-107
[3]   Schauder estimates for equations with fractional derivatives [J].
Clément, P ;
Gripenberg, G ;
Londen, SO .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (05) :2239-2260
[4]   QUALITATIVE PROPERTIES OF SOLUTIONS OF VOLTERRA-EQUATIONS IN BANACH-SPACES [J].
CLEMENT, P ;
MITIDIERI, E .
ISRAEL JOURNAL OF MATHEMATICS, 1988, 64 (01) :1-24
[5]  
Clément P, 2001, LECT NOTES PURE APPL, V215, P235
[6]  
CLEMENT P, 2000, AMER MATH SOC, P125
[7]  
Clement Ph., 2001, J EVOL EQU, V1, P39, DOI [DOI 10.1007/PL00001364, 10.1007/PL00001364]
[8]  
DAPRATO G, 1975, J MATH PURE APPL, V54, P305
[9]  
DENK R, 2001, 2156 TECHNOSCHE U FA