Developing and validating a chronic obstructive pulmonary disease quick screening questionnaire using statistical learning models

被引:2
作者
Wang, Xiaoyue [1 ,2 ]
He, Hong [3 ,4 ]
Xu, Liang [5 ]
Chen, Cuicui [1 ,2 ]
Zhang, Jieqing [2 ,6 ]
Li, Na [5 ]
Chen, Xianxian [5 ]
Jiang, Weipeng [1 ,2 ]
Li, Li [1 ,2 ]
Wang, Linlin [1 ,2 ]
Song, Yuanlin [1 ,2 ]
Xiao, Jing [5 ]
Zhang, Jun [3 ,4 ]
Hou, Dongni [1 ,2 ]
机构
[1] Fudan Univ, Zhongshan Hosp, Dept Pulm & Crit Care Med, 180 Fenglin Rd, Shanghai 200032, Peoples R China
[2] Shanghai Key Lab Lung Inflammat & Injury, Shanghai, Peoples R China
[3] Fudan Univ, Shanghai Canc Ctr, Dept Anesthesiol, 270 Dong An Rd, Shanghai 200032, Peoples R China
[4] Fudan Univ, Shanghai Med Coll, Dept Oncol, 270 Dong An Rd, Shanghai 200032, Peoples R China
[5] Ping An Technol Shenzhen Co Ltd, AI Ctr, Shenzhen, Peoples R China
[6] Fudan Univ, Zhongshan Hosp, Dept Pharm, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
chronic obstructive pulmonary disease; machine learning; generalized additive model; screening; smoking; COPD POPULATION SCREENER; RISK;
D O I
10.1177/14799731221116585
中图分类号
R56 [呼吸系及胸部疾病];
学科分类号
摘要
Background Active targeted case-finding is a cost-effective way to identify individuals with high-risk for early diagnosis and interventions of chronic obstructive pulmonary disease (COPD). A precise and practical COPD screening instrument is needed in health care settings. Methods We created four statistical learning models to predict the risk of COPD using a multi-center randomized cross-sectional survey database (n = 5281). The minimal set of predictors and the best statistical learning model in identifying individuals with airway obstruction were selected to construct a new case-finding questionnaire. We validated its performance in a prospective cohort (n = 958) and compared it with three previously reported case-finding instruments. Results A set of seven predictors was selected from 643 variables, including age, morning productive cough, wheeze, years of smoking cessation, gender, job, and pack-year of smoking. In four statistical learning models, generalized additive model model had the highest area under curve (AUC) value both on the developing cross-sectional data set (AUC = 0.813) and the prospective validation data set (AUC = 0.880). Our questionnaire outperforms the other three tools on the cross-sectional validation data set. Conclusions We developed a COPD case-finding questionnaire, which is an efficient and cost-effective tool for identifying high-risk population of COPD.
引用
收藏
页数:9
相关论文
共 25 条
  • [1] The Occupational Burden of Nonmalignant Respiratory Diseases An Official American Thoracic Society and European Respiratory Society Statement
    Blanc, Paul D.
    Annesi-Maesano, Isabella
    Balmes, John R.
    Cummings, Kristin J.
    Fishwick, David
    Miedinger, David
    Murgia, Nicola
    Naidoo, Rajen N.
    Reynolds, Carl J.
    Sigsgaard, Torben
    Toren, Kjell
    Vinnikov, Denis
    Redlich, Carrie A.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2019, 199 (11) : 1312 - 1334
  • [2] Underdiagnosis and Overdiagnosis of Chronic Obstructive Pulmonary Disease
    Diab, Nermin
    Gershon, Andrea S.
    Sin, Don D.
    Tan, Wan C.
    Bourbeau, Jean
    Boulet, Louis-Philippe
    Aaron, Shawn D.
    [J]. AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2018, 198 (09) : 1130 - 1139
  • [3] Moving beyond regression techniques in cardiovascular risk prediction: applying machine learning to address analytic challenges
    Goldstein, Benjamin A.
    Navar, Ann Marie
    Carter, Rickey E.
    [J]. EUROPEAN HEART JOURNAL, 2017, 38 (23) : 1805 - 1814
  • [4] Machine Learning-Based Model for Prediction of Outcomes in Acute Stroke
    Heo, JoonNyung
    Yoon, Jihoon G.
    Park, Hyungjong
    Kim, Young Dae
    Nam, Hyo Suk
    Heo, Ji Hoe
    [J]. STROKE, 2019, 50 (05) : 1263 - 1265
  • [5] Early prediction of mortality risk among patients with severe COVID-19, using machine learning
    Hu, Chuanyu
    Liu, Zhenqiu
    Jiang, Yanfeng
    Shi, Oumin
    Zhang, Xin
    Xu, Kelin
    Suo, Chen
    Wang, Qin
    Song, Yujing
    Yu, Kangkang
    Mao, Xianhua
    Wu, Xuefu
    Wu, Mingshan
    Shi, Tingting
    Jiang, Wei
    Mu, Lina
    Tully, Damien C.
    Xu, Lei
    Jin, Li
    Li, Shusheng
    Tao, Xuejin
    Zhang, Tiejun
    Chen, Xingdong
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2020, 49 (06) : 1918 - 1929
  • [6] Targeted case finding for chronic obstructive pulmonary disease versus routine practice in primary care (TargetCOPD): a cluster-randomised controlled trial
    Jordan, Rachel E.
    Adab, Peymane
    Sitch, Alice
    Enocson, Alexandra
    Blissett, Deirdre
    Jowett, Sue
    Marsh, Jen
    Riley, Richard D.
    Miller, Martin R.
    Cooper, Brendan G.
    Turner, Alice M.
    Jolly, Kate
    Ayres, Jon G.
    Haroon, Shamil
    Stockley, Robert
    Greenfield, Sheila
    Siebert, Stanley
    Daley, Amanda J.
    Cheng, K. K.
    Fitzmaurice, David
    [J]. LANCET RESPIRATORY MEDICINE, 2016, 4 (09) : 720 - 730
  • [7] Screening for COPD: the gap between logic and evidence
    Kaplan, Alan
    Thomas, Mike
    [J]. EUROPEAN RESPIRATORY REVIEW, 2017, 26 (143)
  • [8] Development and validation of a model to predict the 10-year risk of general practitioner-recorded COPD
    Kotz, Daniel
    Simpson, Colin R.
    Viechtbauer, Wolfgang
    van Schayck, Onno Cp
    Sheikh, Aziz
    [J]. NPJ PRIMARY CARE RESPIRATORY MEDICINE, 2014, 24
  • [9] Improving Detection of Early Chronic Obstructive Pulmonary Disease
    Labaki, Wassim W.
    Han, MeiLan K.
    [J]. ANNALS OF THE AMERICAN THORACIC SOCIETY, 2018, 15 : S243 - S248
  • [10] Determinants of Underdiagnosis of COPD in National and International Surveys
    Lamprecht, Bernd
    Soriano, Joan B.
    Studnicka, Michael
    Kaiser, Bernhard
    Vanfleteren, Lowie E.
    Gnatiuc, Louisa
    Burney, Peter
    Miravitlles, Marc
    Garcia-Rio, Francisco
    Akbari, Kaveh
    Ancochea, Julio
    Menezes, Ana M.
    Perez-Padilla, Rogelio
    Montes de Oca, Maria
    Torres-Duque, Carlos A.
    Caballero, Andres
    Gonzalez-Garcia, Mauricio
    Buist, Sonia
    [J]. CHEST, 2015, 148 (04) : 971 - 985