A Hybrid Model based on Convolutional Neural Networks and Long Short-term Memory for Rest Tremor Classification

被引:1
|
作者
Fourati, Jihen [1 ,2 ]
Othmani, Mohamed [3 ]
Ltifi, Hela [1 ,4 ]
机构
[1] Univ Sfax, Natl Engn Sch Sfax, BP 1173, Sfax, Tunisia
[2] Univ Gafsa, Fac Sci Gafsa, Res Lab Technol, Energy & Innovat Mat Lab, Gafsa, Tunisia
[3] Univ Gafsa, Fac Sci Gafsa, BP 2100, Gafsa, Tunisia
[4] Res Grp Intelligent Machines Lab, BP 3038, Sfax, Tunisia
来源
ICAART: PROCEEDINGS OF THE 14TH INTERNATIONAL CONFERENCE ON AGENTS AND ARTIFICIAL INTELLIGENCE - VOL 3 | 2022年
关键词
Resting Tremor; Deep Learning; Long-short Term Memory; Convolutional Neural Network; Parkinson's Disease; IDENTIFICATION;
D O I
10.5220/0010773600003116
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Parkinson's disease is a neurodegenerative disease, in which tremor is the main symptom. Deep brain stimulation can help manage a broad range of neurological ailments such as Parkinson's disease. It involves electrical impulses delivered to specific targets in the brain, with the purpose of altering or modulating neural functioning. Security is playing a vital role in protecting healthcare gadgets from unauthorized access or modification. Our purpose is to adopt deep learning methodologies to classify resting tremors. To achieve this purpose, a novel approach for resting tremor classification in patients with Parkinson's disease using a hybrid model based on convolutional neural networks and long short-term memory is proposed. This research exploits the high-level feature extraction of the convolutional neural network model and the potential capacity to capture long-term dependencies of the long short-term memory model. The performed experiments demonstrate that our proposed approach outperforms the best result for other state-of-the-art methods.
引用
收藏
页码:75 / 82
页数:8
相关论文
共 50 条
  • [41] A review on the long short-term memory model
    Van Houdt, Greg
    Mosquera, Carlos
    Napoles, Gonzalo
    ARTIFICIAL INTELLIGENCE REVIEW, 2020, 53 (08) : 5929 - 5955
  • [42] Hybrid Deep Learning Network Intrusion Detection System Based on Convolutional Neural Network and Bidirectional Long Short-Term Memory
    Jihado, Anindra Ageng
    Girsang, Abba Suganda
    JOURNAL OF ADVANCES IN INFORMATION TECHNOLOGY, 2024, 15 (02) : 219 - 232
  • [43] A groundwater level spatiotemporal prediction model based on graph convolutional networks with a long short-term memory
    Wang, Lifang
    Jiang, Zhengwen
    Song, Lei
    Yu, Xi
    Yuan, Shujun
    Zhang, Baoyi
    JOURNAL OF HYDROINFORMATICS, 2024, 26 (11) : 2962 - 2979
  • [44] Driver drowsiness detection using hybrid convolutional neural network and long short-term memory
    Guo, Jing-Ming
    Markoni, Herleeyandi
    MULTIMEDIA TOOLS AND APPLICATIONS, 2019, 78 (20) : 29059 - 29087
  • [45] Driver drowsiness detection using hybrid convolutional neural network and long short-term memory
    Jing-Ming Guo
    Herleeyandi Markoni
    Multimedia Tools and Applications, 2019, 78 : 29059 - 29087
  • [46] An efficient Long Short-Term Memory model based on Laplacian Eigenmap in artificial neural networks
    Hu, Fang
    Zhu, Yanhui
    Liu, Jia
    Li, Liuhuan
    APPLIED SOFT COMPUTING, 2020, 91
  • [47] Health condition monitoring of machines based on long short-term memory convolutional autoencoder
    Ye, Zhuang
    Yu, Jianbo
    APPLIED SOFT COMPUTING, 2021, 107
  • [48] Long short term memory-convolutional neural network based deep hybrid approach for solar irradiance forecasting
    Kumari, Pratima
    Toshniwal, Durga
    APPLIED ENERGY, 2021, 295
  • [49] Landmark tracking in liver US images using cascade convolutional neural networks with long short-term memory
    Zhang, Yupei
    Dai, Xianjin
    Tian, Zhen
    Lei, Yang
    Wynne, Jacob F.
    Patel, Pretesh
    Chen, Yue
    Liu, Tian
    Yang, Xiaofeng
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (05)
  • [50] Hybrid optimized temporal convolutional networks with long short-term memory for heart disease prediction with deep features
    Balamurugan, M.
    Meera, S.
    COMPUTER METHODS IN BIOMECHANICS AND BIOMEDICAL ENGINEERING, 2024,