Bayesian nonparametric;
Covariance estimation;
Dirichlet process mixture;
Gaussian process;
Mixed model;
Ornstein-Uhlenbeck process;
Study of Women Across the Nation (SWAN);
LINEAR MIXED MODELS;
COVARIANCE-MATRIX;
MIXTURE;
DISTRIBUTIONS;
POPULATION;
INFERENCE;
PRIORS;
D O I:
10.1080/01621459.2015.1076725
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
Practical Bayesian nonparametric methods have been developed across a wide variety of contexts. Here, we develop a novel statistical model that generalizes standard mixed models for longitudinal data that include flexible mean functions as well as combined compound symmetry (CS) and autoregressive (AR) covariance structures. AR structure is often specified through the use of a Gaussian process (GP) with covariance functions that allow longitudinal data to be more correlated if they are observed closer in time than if they are observed farther apart. We allow for AR structure by considering a broader class of models that incorporates a Dirichlet process mixture (DPM) over the covariance parameters of the GP. We are able to take advantage of modern Bayesian statistical methods in making full predictive inferences and about characteristics of longitudinal profiles and their differences across covariate combinations. We also take advantage of the generality of our model, which provides for estimation of a variety of covariance structures. We observe that models that fail to incorporate CS or AR structure can result in very poor estimation of a covariance or correlation matrix. In our illustration using hormone data observed on women through the menopausal transition, biology dictates the use of a generalized family of sigmoid functions as a model for time trends across subpopulation categories.
机构:
Univ Minnesota, Div Biostat, A460 Mayo Bldg,MMC 303,420 Delaware St SE, Minneapolis, MN 55455 USAUniv Minnesota, Div Biostat, A460 Mayo Bldg,MMC 303,420 Delaware St SE, Minneapolis, MN 55455 USA
Lock, Eric F.
Bandyopadhyay, Dipankar
论文数: 0引用数: 0
h-index: 0
机构:
Virginia Commonwealth Univ, Dept Biostat, Richmond, VA USAUniv Minnesota, Div Biostat, A460 Mayo Bldg,MMC 303,420 Delaware St SE, Minneapolis, MN 55455 USA
机构:
Univ Minnesota, Div Biostat & Hlth Data Sci, Minneapolis, MN 55455 USAUniv Minnesota, Div Biostat & Hlth Data Sci, Minneapolis, MN 55455 USA
Cao, Wenhao
Chu, Haitao
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Div Biostat & Hlth Data Sci, Minneapolis, MN 55455 USA
Pfizer Inc, Stat Res & Data Sci Ctr, New York, NY USAUniv Minnesota, Div Biostat & Hlth Data Sci, Minneapolis, MN 55455 USA
Chu, Haitao
Hanson, Timothy
论文数: 0引用数: 0
h-index: 0
机构:
Medtronic Plc, Enterprise CRMS, Mounds View, MN USAUniv Minnesota, Div Biostat & Hlth Data Sci, Minneapolis, MN 55455 USA
Hanson, Timothy
Siegel, Lianne
论文数: 0引用数: 0
h-index: 0
机构:
Univ Minnesota, Div Biostat & Hlth Data Sci, Minneapolis, MN 55455 USAUniv Minnesota, Div Biostat & Hlth Data Sci, Minneapolis, MN 55455 USA
机构:
Rice Univ, Dept Stat, 6100 Main St,Maxfield Hall, Houston, TX 77005 USARice Univ, Dept Stat, 6100 Main St,Maxfield Hall, Houston, TX 77005 USA
Sun, Thomas Y.
Kowal, Daniel R.
论文数: 0引用数: 0
h-index: 0
机构:
Rice Univ, Dept Stat, 6100 Main St,Maxfield Hall, Houston, TX 77005 USA
Cornell Univ, Dept Stat & Data Sci, Ithaca, NY USARice Univ, Dept Stat, 6100 Main St,Maxfield Hall, Houston, TX 77005 USA