Bayesian Nonparametric Longitudinal Data Analysis

被引:27
|
作者
Quintana, Fernando A. [1 ]
Johnson, Wesley O. [2 ]
Waetjen, L. Elaine [3 ,4 ]
Gold, Ellen B. [3 ,4 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Estad, Santiago, Chile
[2] Univ Calif Irvine, Dept Stat, Irvine, CA USA
[3] Univ Calif Davis, Dept Obstet & Gynecol, Davis, CA 95616 USA
[4] Univ Calif Davis, Dept Publ Hlth Sci, Div Epidemiol, Davis, CA 95616 USA
基金
美国国家卫生研究院;
关键词
Bayesian nonparametric; Covariance estimation; Dirichlet process mixture; Gaussian process; Mixed model; Ornstein-Uhlenbeck process; Study of Women Across the Nation (SWAN); LINEAR MIXED MODELS; COVARIANCE-MATRIX; MIXTURE; DISTRIBUTIONS; POPULATION; INFERENCE; PRIORS;
D O I
10.1080/01621459.2015.1076725
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Practical Bayesian nonparametric methods have been developed across a wide variety of contexts. Here, we develop a novel statistical model that generalizes standard mixed models for longitudinal data that include flexible mean functions as well as combined compound symmetry (CS) and autoregressive (AR) covariance structures. AR structure is often specified through the use of a Gaussian process (GP) with covariance functions that allow longitudinal data to be more correlated if they are observed closer in time than if they are observed farther apart. We allow for AR structure by considering a broader class of models that incorporates a Dirichlet process mixture (DPM) over the covariance parameters of the GP. We are able to take advantage of modern Bayesian statistical methods in making full predictive inferences and about characteristics of longitudinal profiles and their differences across covariate combinations. We also take advantage of the generality of our model, which provides for estimation of a variety of covariance structures. We observe that models that fail to incorporate CS or AR structure can result in very poor estimation of a covariance or correlation matrix. In our illustration using hormone data observed on women through the menopausal transition, biology dictates the use of a generalized family of sigmoid functions as a model for time trends across subpopulation categories.
引用
收藏
页码:1168 / 1181
页数:14
相关论文
共 50 条
  • [41] Bayesian nonparametric multiway regression for clustered binomial data
    Lock, Eric F.
    Bandyopadhyay, Dipankar
    STAT, 2021, 10 (01):
  • [42] Online Nonparametric Bayesian Activity Mining and Analysis From Surveillance Video
    Bastani, Vahid
    Marcenaro, Lucio
    Regazzoni, Carlo S.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (05) : 2089 - 2102
  • [43] Bayesian analysis of nonlinear mixed-effects mixture models for longitudinal data with heterogeneity and skewness
    Lu, Xiaosun
    Huang, Yangxin
    STATISTICS IN MEDICINE, 2014, 33 (16) : 2830 - 2849
  • [44] Bayesian nonparametric analysis of Kingman's coalescent
    Favaro, Stefano
    Feng, Shui
    Jenkins, Paul A.
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2019, 55 (02): : 1087 - 1115
  • [45] A Bayesian nonparametric meta-analysis model for estimating the reference interval
    Cao, Wenhao
    Chu, Haitao
    Hanson, Timothy
    Siegel, Lianne
    STATISTICS IN MEDICINE, 2024, 43 (10) : 1905 - 1919
  • [46] Bayesian Analysis of Rank Data with Covariates and Heterogeneous Rankers
    Li, Xinran
    Yi, Dingdong
    Liu, Jun S.
    STATISTICAL SCIENCE, 2022, 37 (01) : 1 - 23
  • [47] Bayesian analysis of longitudinal ordered data with flexible random effects using McMC: application to diabetic macular Edema data
    Mansourian, Marjan
    Kazemnejad, Anoshirvan
    Kazemi, Iraj
    Zayeri, Farid
    Soheilian, Masoud
    JOURNAL OF APPLIED STATISTICS, 2012, 39 (05) : 1087 - 1100
  • [48] Ultra-Efficient MCMC for Bayesian Longitudinal Functional Data Analysis
    Sun, Thomas Y.
    Kowal, Daniel R.
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2025, 34 (01) : 34 - 46
  • [49] A Bayesian nonparametric method for model evaluation: application to genetic studies
    Shahbaba, Babak
    Gentles, Andrew J.
    Beyene, Joseph
    Plevritis, Sylvia K.
    Greenwood, Celia M. T.
    JOURNAL OF NONPARAMETRIC STATISTICS, 2009, 21 (03) : 379 - 396
  • [50] Bayesian semiparametric modeling for HIV longitudinal data with censoring and skewness
    Castro, Luis M.
    Wang, Wan-Lun
    Lachos, Victor H.
    de Carvalho, Vanda Inacio
    Bayes, Cristian L.
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2019, 28 (05) : 1457 - 1476