Bayesian Nonparametric Longitudinal Data Analysis

被引:27
|
作者
Quintana, Fernando A. [1 ]
Johnson, Wesley O. [2 ]
Waetjen, L. Elaine [3 ,4 ]
Gold, Ellen B. [3 ,4 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Estad, Santiago, Chile
[2] Univ Calif Irvine, Dept Stat, Irvine, CA USA
[3] Univ Calif Davis, Dept Obstet & Gynecol, Davis, CA 95616 USA
[4] Univ Calif Davis, Dept Publ Hlth Sci, Div Epidemiol, Davis, CA 95616 USA
基金
美国国家卫生研究院;
关键词
Bayesian nonparametric; Covariance estimation; Dirichlet process mixture; Gaussian process; Mixed model; Ornstein-Uhlenbeck process; Study of Women Across the Nation (SWAN); LINEAR MIXED MODELS; COVARIANCE-MATRIX; MIXTURE; DISTRIBUTIONS; POPULATION; INFERENCE; PRIORS;
D O I
10.1080/01621459.2015.1076725
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Practical Bayesian nonparametric methods have been developed across a wide variety of contexts. Here, we develop a novel statistical model that generalizes standard mixed models for longitudinal data that include flexible mean functions as well as combined compound symmetry (CS) and autoregressive (AR) covariance structures. AR structure is often specified through the use of a Gaussian process (GP) with covariance functions that allow longitudinal data to be more correlated if they are observed closer in time than if they are observed farther apart. We allow for AR structure by considering a broader class of models that incorporates a Dirichlet process mixture (DPM) over the covariance parameters of the GP. We are able to take advantage of modern Bayesian statistical methods in making full predictive inferences and about characteristics of longitudinal profiles and their differences across covariate combinations. We also take advantage of the generality of our model, which provides for estimation of a variety of covariance structures. We observe that models that fail to incorporate CS or AR structure can result in very poor estimation of a covariance or correlation matrix. In our illustration using hormone data observed on women through the menopausal transition, biology dictates the use of a generalized family of sigmoid functions as a model for time trends across subpopulation categories.
引用
收藏
页码:1168 / 1181
页数:14
相关论文
共 50 条
  • [31] Bayesian joint analysis of heterogeneous- and skewed-longitudinal data and a binary outcome, with application to AIDS clinical studies
    Lu, Xiaosun
    Huang, Yangxin
    Chen, Jiaqing
    Zhou, Rong
    Yu, Shuli
    Yin, Ping
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2018, 27 (10) : 2946 - 2963
  • [32] A Nonparametric Bayesian Framework for Uncertainty Quantification in Stochastic Simulation
    Xie, Wei
    Li, Cheng
    Wu, Yuefeng
    Zhang, Pu
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (04) : 1527 - 1552
  • [33] Computational challenges and temporal dependence in Bayesian nonparametric models
    Argiento, Raffaele
    Ruggiero, Matteo
    STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02) : 231 - 238
  • [34] Nonparametric Bayesian inference in applications
    Mueeller, Peter
    Quintana, Fernando A.
    Page, Garritt
    STATISTICAL METHODS AND APPLICATIONS, 2018, 27 (02) : 175 - 206
  • [35] Nonparametric Bayesian modelling using skewed Dirichlet processes
    Iglesias, Pilar L.
    Orellana, Yasna
    Quintana, Fernando A.
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2009, 139 (03) : 1203 - 1214
  • [36] A Bayesian semiparametric model for bivariate sparse longitudinal data
    Das, Kiranmoy
    Li, Runze
    Sengupta, Subhajit
    Wu, Rongling
    STATISTICS IN MEDICINE, 2013, 32 (22) : 3899 - 3910
  • [37] Bayesian nonparametric monotone regression
    Wilson, Ander
    Tryner, Jessica
    L'Orange, Christian
    Volckens, John
    ENVIRONMETRICS, 2020, 31 (08)
  • [38] Bayesian Nonparametric Mixture Estimation for Time-Indexed Functional Data in R
    Savitsky, Terrance D.
    JOURNAL OF STATISTICAL SOFTWARE, 2016, 72 (02): : 1 - 34
  • [39] A spatio-temporal nonparametric Bayesian variable selection model of fMRI data for clustering correlated time courses
    Zhang, Linlin
    Guindani, Michele
    Versace, Francesco
    Vannucci, Marina
    NEUROIMAGE, 2014, 95 : 162 - 175
  • [40] A Bayesian Nonparametric Approach to Unmixing Detrital Geochronologic Data
    Tipton, John R.
    Sharman, Glenn R.
    Johnstone, Samuel A.
    MATHEMATICAL GEOSCIENCES, 2022, 54 (01) : 151 - 176