Bayesian Nonparametric Longitudinal Data Analysis

被引:27
|
作者
Quintana, Fernando A. [1 ]
Johnson, Wesley O. [2 ]
Waetjen, L. Elaine [3 ,4 ]
Gold, Ellen B. [3 ,4 ]
机构
[1] Pontificia Univ Catolica Chile, Dept Estad, Santiago, Chile
[2] Univ Calif Irvine, Dept Stat, Irvine, CA USA
[3] Univ Calif Davis, Dept Obstet & Gynecol, Davis, CA 95616 USA
[4] Univ Calif Davis, Dept Publ Hlth Sci, Div Epidemiol, Davis, CA 95616 USA
基金
美国国家卫生研究院;
关键词
Bayesian nonparametric; Covariance estimation; Dirichlet process mixture; Gaussian process; Mixed model; Ornstein-Uhlenbeck process; Study of Women Across the Nation (SWAN); LINEAR MIXED MODELS; COVARIANCE-MATRIX; MIXTURE; DISTRIBUTIONS; POPULATION; INFERENCE; PRIORS;
D O I
10.1080/01621459.2015.1076725
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Practical Bayesian nonparametric methods have been developed across a wide variety of contexts. Here, we develop a novel statistical model that generalizes standard mixed models for longitudinal data that include flexible mean functions as well as combined compound symmetry (CS) and autoregressive (AR) covariance structures. AR structure is often specified through the use of a Gaussian process (GP) with covariance functions that allow longitudinal data to be more correlated if they are observed closer in time than if they are observed farther apart. We allow for AR structure by considering a broader class of models that incorporates a Dirichlet process mixture (DPM) over the covariance parameters of the GP. We are able to take advantage of modern Bayesian statistical methods in making full predictive inferences and about characteristics of longitudinal profiles and their differences across covariate combinations. We also take advantage of the generality of our model, which provides for estimation of a variety of covariance structures. We observe that models that fail to incorporate CS or AR structure can result in very poor estimation of a covariance or correlation matrix. In our illustration using hormone data observed on women through the menopausal transition, biology dictates the use of a generalized family of sigmoid functions as a model for time trends across subpopulation categories.
引用
收藏
页码:1168 / 1181
页数:14
相关论文
共 50 条
  • [1] Bayesian nonparametric hierarchical modeling
    Dunson, David B.
    BIOMETRICAL JOURNAL, 2009, 51 (02) : 273 - 284
  • [2] Robustifying Bayesian Nonparametric Mixtures for Count Data
    Canale, Antonio
    Prunster, Igor
    BIOMETRICS, 2017, 73 (01) : 174 - 184
  • [3] Bayesian nonparametric functional data analysis through density estimation
    Rodriguez, Abel
    Dunson, David B.
    Gelfand, Alan E.
    BIOMETRIKA, 2009, 96 (01) : 149 - 162
  • [4] Bayesian Nonparametric Models for Multiway Data Analysis
    Xu, Zenglin
    Yan, Feng
    Qi, Yuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (02) : 475 - 487
  • [5] Nonparametric Bayesian functional two-part random effects model for longitudinal semicontinuous data analysis
    Park, Jinsu
    Choi, Taeryon
    Chung, Yeonseung
    BIOMETRICAL JOURNAL, 2021, 63 (04) : 787 - 805
  • [6] A Bayesian nonparametric model for upper record data
    Seo, Jung-In
    Song, Joon Jin
    APPLIED MATHEMATICAL MODELLING, 2019, 71 : 363 - 374
  • [7] A Bayesian nonparametric model for classification of longitudinal profiles
    Gaskins, Jeremy T.
    Fuentes, Claudio
    De la Cruz, Rolando
    BIOSTATISTICS, 2022, 24 (01) : 209 - 225
  • [8] Simultaneous nonparametric regression analysis of sparse longitudinal data
    Cao, Hongyuan
    Liu, Weidong
    Zhou, Zhou
    BERNOULLI, 2018, 24 (4A) : 3013 - 3038
  • [9] A Nonparametric Bayesian Analysis of Response Data with Gaps, Outliers and Ties
    Yin, Jiani
    Nandram, Balgobin
    STATISTICS AND APPLICATIONS, 2020, 18 (02): : 121 - 141
  • [10] Nonparametric Bayesian Lifetime Data Analysis using Dirichlet Process Lognormal Mixture Model
    Cheng, Nan
    Yuan, Tao
    NAVAL RESEARCH LOGISTICS, 2013, 60 (03) : 208 - 221