Community Detection in Multi-Layer Networks Using Joint Nonnegative Matrix Factorization

被引:138
作者
Ma, Xiaoke [1 ]
Dong, Di [2 ]
Wang, Quan [1 ]
机构
[1] Xidian Univ, Sch Comp Sci & Technol, Xian 710071, Shaanxi, Peoples R China
[2] Chinese Acad Sci, Inst Automat, Key Lab Mol Imaging, Beijing 100190, Peoples R China
关键词
Multi-layer networks; community structure; nonnegative matrix factorization; semi-supervised clustering; PREDICTION; ALGORITHMS; EXPRESSION; CUTS;
D O I
10.1109/TKDE.2018.2832205
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many complex systems are composed of coupled networks through different layers, where each layer represents one of many possible types of interactions. A fundamental question is how to extract communities in multi-layer networks. The current algorithms either collapses multi-layer networks into a single-layer network or extends the algorithms for single-layer networks by using consensus clustering. However, these approaches have been criticized for ignoring the connection among various layers, thereby resulting in low accuracy. To attack this problem, a quantitative function (multi-layer modularity density) is proposed for community detection in multi-layer networks. Afterward, we prove that the trace optimization of multi-layer modularity density is equivalent to the objective functions of algorithms, such as kernel K-means, nonnegative matrix factorization (NMF), spectral clustering and multi-view clustering, for multi-layer networks, which serves as the theoretical foundation for designing algorithms for community detection. Furthermore, a Semi-Supervised joint Nonnegative Matrix Factorization algorithm (S2-jNMF) is developed by simultaneously factorizing matrices that are associated with multi-layer networks. Unlike the traditional semi-supervised algorithms, the partial supervision is integrated into the objective of the S2-jNMF algorithm. Finally, through extensive experiments on both artificial and real world networks, we demonstrate that the proposed method outperforms the state-of-the-art approaches for community detection in multi-layer networks.
引用
收藏
页码:273 / 286
页数:14
相关论文
共 63 条
[1]  
[Anonymous], PHY REV E
[2]  
[Anonymous], 2016, ARXIV160800623
[3]  
[Anonymous], ADV NEURAL INFORMATI
[4]  
[Anonymous], 199966 STANDF INF LA
[5]  
[Anonymous], 2010, tech. report
[6]   Analysis of the structure of complex networks at different resolution levels [J].
Arenas, A. ;
Fernandez, A. ;
Gomez, S. .
NEW JOURNAL OF PHYSICS, 2008, 10
[7]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[8]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[9]   Multi-view clustering [J].
Bickel, S ;
Scheffer, T .
FOURTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2004, :19-26
[10]   The structure and dynamics of multilayer networks [J].
Boccaletti, S. ;
Bianconi, G. ;
Criado, R. ;
del Genio, C. I. ;
Gomez-Gardenes, J. ;
Romance, M. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zanin, M. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2014, 544 (01) :1-122