Force-Induced Unfolding Simulations of the Human Notch1 Negative Regulatory Region: Possible Roles of the Heterodimerization Domain in Mechanosensing

被引:14
作者
Chen, Jianhan [1 ]
Zolkiewska, Anna [1 ]
机构
[1] Kansas State Univ, Dept Biochem, Manhattan, KS 66506 USA
来源
PLOS ONE | 2011年 / 6卷 / 07期
基金
美国国家卫生研究院;
关键词
ACUTE LYMPHOBLASTIC-LEUKEMIA; MOLECULAR-DYNAMICS SIMULATIONS; HISTOGRAM ANALYSIS METHOD; LIGAND ENDOCYTOSIS; MECHANICAL RESISTANCE; BIPHASIC KINETICS; ATOMISTIC DETAILS; REPLICA-EXCHANGE; STRUCTURAL BASIS; WW DOMAIN;
D O I
10.1371/journal.pone.0022837
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Notch receptors are core components of the Notch signaling pathway and play a central role in cell fate decisions during development as well as tissue homeostasis. Upon ligand binding, Notch is sequentially cleaved at the S2 site by an ADAM protease and at the S3 site by the gamma-secretase complex. Recent X-ray structures of the negative regulatory region (NRR) of the Notch receptor reveal an auto-inhibited fold where three protective Lin12/Notch repeats (LNR) of the NRR shield the S2 cleavage site housed in the heterodimerization (HD) domain. One of the models explaining how ligand binding drives the NRR conformation from a protease-resistant state to a protease-sensitive one invokes a mechanical force exerted on the NRR upon ligand endocytosis. Here, we combined physics-based atomistic simulations and topology-based coarse-grained modeling to investigate the intrinsic and force-induced folding and unfolding mechanisms of the human Notch1 NRR. The simulations support that external force applied to the termini of the NRR disengages the LNR modules from the heterodimerization (HD) domain in a well-defined, largely sequential manner. Importantly, the mechanical force can further drive local unfolding of the HD domain in a functionally relevant fashion that would provide full proteolytic access to the S2 site prior to heterodimer disassociation. We further analyzed local structural features, intrinsic folding free energy surfaces, and correlated motions of the HD domain. The results are consistent with a model in which the HD domain possesses inherent mechanosensing characteristics that could be utilized during Notch activation. This potential role of the HD domain in ligand-dependent Notch activation may have implications for understanding normal and aberrant Notch signaling.
引用
收藏
页数:11
相关论文
共 76 条
  • [11] Recent advances in implicit solvent-based methods for biomolecular simulations
    Chen, Jianhan
    Brooks, Charles L., III
    Khandogin, Jana
    [J]. CURRENT OPINION IN STRUCTURAL BIOLOGY, 2008, 18 (02) : 140 - 148
  • [12] Intrinsically Disordered p53 Extreme C-Terminus Binds to S100B(ββ) through "Fly-Casting"
    Chen, Jianhan
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (06) : 2088 - +
  • [13] Why is Delta endocytosis required for effective activation of Notch?
    Chitnis, A
    [J]. DEVELOPMENTAL DYNAMICS, 2006, 235 (04) : 886 - 894
  • [14] A presenilin-1-dependent γ-secretase-like protease mediates release of Notch intracellular domain
    De Strooper, B
    Annaert, W
    Cupers, P
    Saftig, P
    Craessaerts, K
    Mumm, JS
    Schroeter, EH
    Schrijvers, V
    Wolfe, MS
    Ray, WJ
    Goate, A
    Kopan, R
    [J]. NATURE, 1999, 398 (6727) : 518 - 522
  • [15] The ADAM metalloproteinases
    Edwards, Dylan R.
    Handsley, Madeleine M.
    Pennington, Caroline J.
    [J]. MOLECULAR ASPECTS OF MEDICINE, 2008, 29 (05) : 258 - 289
  • [16] MMTSB Tool Set: enhanced sampling and multiscale modeling methods for applications in structural biology
    Feig, M
    Karanicolas, J
    Brooks, CL
    [J]. JOURNAL OF MOLECULAR GRAPHICS & MODELLING, 2004, 22 (05) : 377 - 395
  • [17] Feig M, 2003, J PHYS CHEM B, V107, P2831, DOI 10.1021/jp027293y
  • [18] Notch Signaling: The Core Pathway and Its Posttranslational Regulation
    Fortini, Mark E.
    [J]. DEVELOPMENTAL CELL, 2009, 16 (05) : 633 - 647
  • [19] Temperature weighted histogram analysis method, replica exchange, and transition paths
    Gallicchio, E
    Andrec, M
    Felts, AK
    Levy, RM
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (14) : 6722 - 6731
  • [20] Atomistic Details of the Disordered States of KID and pKID. Implications in Coupled Binding and Folding
    Ganguly, Debabani
    Chen, Jianhan
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2009, 131 (14) : 5214 - 5223