CONICAL SQUARE FUNCTIONS AND NON-TANGENTIAL MAXIMAL FUNCTIONS WITH RESPECT TO THE GAUSSIAN MEASURE

被引:16
|
作者
Maas, Jan [1 ]
van Neerven, Jan [2 ]
Portal, Pierre [3 ]
机构
[1] Univ Bonn, Inst Appl Math, D-53115 Bonn, Germany
[2] Delft Univ Technol, Delft Inst Appl Math, NL-2600 GA Delft, Netherlands
[3] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
关键词
Hardy spaces; Gaussian measure; Ornstein-Uhlenbeck operator; square function; maximal function; HARDY-SPACES; OPERATORS; BMO;
D O I
10.5565/PUBLMAT_55211_03
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study, in L(1) (R(n); gamma) with respect to the gaussian measure, non-tangential maximal functions and conical square functions associated with the Ornstein-Uhlenbeck operator by developing a set of techniques which allow us, to some extent, to compensate for the non-doubling character of the gaussian measure. The main result asserts that conical square functions can be controlled in L(1)-norm by non-tangential maximal functions. Along the way we prove a change of aperture result for the latter. This complements recent results on gaussian Hardy spaces due to Mauceri and Meda.
引用
收藏
页码:313 / 341
页数:29
相关论文
共 50 条
  • [31] Tangential Limits for Harmonic Functions with Respect to I•(Δ): Stable and Beyond
    Kang, Jaehoon
    Kim, Panki
    POTENTIAL ANALYSIS, 2015, 42 (03) : 629 - 644
  • [32] Weighted Estimates for Generalised Conical Square Functions and Applications
    Bui, The Anh
    Duong, Xuan Thinh
    Li, Ji
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2025, 41 (01) : 191 - 208
  • [33] Weighted Estimates for Generalised Conical Square Functions and Applications
    The Anh Bui
    Xuan Thinh Duong
    Ji Li
    Acta Mathematica Sinica,English Series, 2025, (01) : 191 - 208
  • [34] INTEGRALS OF EXPONENTIAL FUNCTIONS WITH RESPECT TO RADON MEASURE
    Merzlyakov, S. G.
    UFA MATHEMATICAL JOURNAL, 2011, 3 (02): : 56 - 78
  • [35] Rational functions with identical measure of maximal entropy
    Ye, Hexi
    ADVANCES IN MATHEMATICS, 2015, 268 : 373 - 395
  • [36] Fractional Maximal Functions in Metric Measure Spaces
    Heikkinen, Toni
    Lehrback, Juha
    Nuutinen, Juho
    Tuominen, Heli
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2013, 1 : 147 - 162
  • [37] INTERPOLATION INEQUALITIES FOR MAXIMAL FUNCTIONS THAT MEASURE SMOOTHNESS
    Lokharu, E. E.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2013, 24 (02) : 327 - 351
  • [39] MONOTONICITY PROPERTIES OF GAUSSIAN HYPERGEOMETRIC FUNCTIONS WITH RESPECT TO THE PARAMETER
    Bao, Q., I
    Wang, Miao-Kun
    Qiu, Song -Liang
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (04): : 1021 - 1045
  • [40] Approximation of functions on the Sobolev space with a Gaussian measure
    Wang HePing
    Zhang YanWei
    Zhai XueBo
    SCIENCE CHINA-MATHEMATICS, 2010, 53 (02) : 373 - 384