Probabilistic 1-D Inversion of Frequency-Domain Electromagnetic Data Using a Kalman Ensemble Generator

被引:16
作者
Bobe, Christin [1 ]
Van De Vijver, Ellen [1 ]
Keller, Johannes [2 ]
Hanssens, Daan [1 ]
Van Meirvenne, Marc [1 ]
De Smedt, Philippe [1 ]
机构
[1] Univ Ghent, Dept Environm, B-9000 Ghent, Belgium
[2] Rhein Westfal TH Aachen, Inst Appl Geophys & Geothermal Energy, E ON Energy Res Ctr, D-52062 Aachen, Germany
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2020年 / 58卷 / 05期
基金
欧盟地平线“2020”;
关键词
Bayesian inversion; frequency-domain electromagnetics (FDEMs); Kalman ensemble generator (KEG); Monte Carlo; MAGNETIC-SUSCEPTIBILITY; EMI SURVEY; RESISTIVITY; DEPTH; CALIBRATION; PARAMETERS; DRIFT;
D O I
10.1109/TGRS.2019.2953004
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Frequency-domain electromagnetic (FDEM) data of the subsurface are determined by electrical conductivity and magnetic susceptibility. We apply a Kalman ensemble generator (KEG) to 1-D probabilistic multilayer inversion of the FDEM data to simultaneously derive conductivity and susceptibility. The KEG provides an efficient alternative to an exhaustive Bayesian framework for FDEM inversion, including a measure for the uncertainty of the inversion result. In addition, the method provides a measure for the depth below which the measurement is insensitive to the parameters of the subsurface. This so-called depth of investigation is derived from ensemble covariances. Synthetic and field data examples reveal how the KEG approach can be applied to FDEM data and how FDEM calibration data and prior beliefs can be combined in the inversion procedure. For the field data set, many inversions for 1-D subsurface models are performed at neighboring measurement locations. Assuming identical prior models for these inversions, we save computational time by reusing the initial KEG ensemble across all measurement locations.
引用
收藏
页码:3287 / 3297
页数:11
相关论文
共 38 条
[1]   Estimating Parameters in Physical Models through Bayesian Inversion: A Complete Example [J].
Allmaras, Moritz ;
Bangerth, Wolfgang ;
Linhart, Jean Marie ;
Polanco, Javier ;
Wang, Fang ;
Wang, Kainan ;
Webster, Jennifer ;
Zedler, Sarah .
SIAM REVIEW, 2013, 55 (01) :149-167
[2]  
[Anonymous], 1980, TECHNICAL NOTE TN 6
[3]  
[Anonymous], 2014, BAYESIAN DATA ANAL, DOI DOI 10.1201/B16018
[4]  
[Anonymous], 2013, UALEM 421S USERS MAN
[5]  
Aster R. C., 2005, Parameter Estimation and Inverse Problems, V2nd
[6]   Simultaneous inversion of airborne electromagnetic data for resistivity and magnetic permeability [J].
Beard, LP ;
Nyquist, JE .
GEOPHYSICS, 1998, 63 (05) :1556-1564
[7]  
Christiansen AV, 2012, GEOPHYSICS, V77, pWB171, DOI [10.1190/geo2011-0393.1, 10.1190/GEO2011-0393.1]
[8]   On structure-based priors in Bayesian geophysical inversion [J].
de Pasquale, G. ;
Linde, N. .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2017, 208 (03) :1342-1358
[9]   Identifying and removing micro-drift in ground-based electromagnetic induction data [J].
De Smedt, Philippe ;
Delefortrie, Samuel ;
Wyffels, Francis .
JOURNAL OF APPLIED GEOPHYSICS, 2016, 131 :14-22
[10]   Exploring the potential of multi-receiver EMI survey for geoarchaeological prospection: A 90 ha dataset [J].
De Smedt, Philippe ;
Saey, Timothy ;
Lehouck, Alexander ;
Stichelbaut, Birger ;
Meerschman, Eef ;
Islam, Mohammad Monirul ;
De Vijver, Ellen Van ;
Van Meirvenne, Marc .
GEODERMA, 2013, 199 :30-36