Double-stranded DNA measurement in lakes with the fluorescent stain PicoGreen and the application to bacterial bioassays

被引:14
作者
Cotner, JB [1 ]
Ogdahl, ML [1 ]
Biddanda, BA [1 ]
机构
[1] Univ Minnesota, Dept Ecol Evolut & Behav, St Paul, MN 55108 USA
关键词
dsDNA; bioassay; bacterial growth rate; PicoGreen; biomass; abundance;
D O I
10.3354/ame025065
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
We used the double-stranded DNA (dsDNA) stain PicoGreen with a microplate fluorometer to measure bacterial abundance, biomass, and growth rates in lake water. PicoGreen fluorescence units (PFU) correlated closely with bacterial abundance measured with acridine orange direct counts (R-2 = 0.95 to 0.98) as well as bacterial biomass inferred from image analysis (R-2 = 0.95 to 0.98) in eutrophic waters. PicoGreen fluorescence increased proportionally with bacterial size, indicating that it was a good indicator of biomass as well as abundance. In oligotrophic Lake Superior, there was a weaker, but significant (p < 0.05) correlation between PFU and abundance (R-2 = 0.52) as well as PFU and biomass (R-2 = 0.54). Growth rate measurements in bottle cultures showed a similar relationship, with PFU, abundance, and biomass being more tightly correlated in productive waters than in oligotrophic waters. Parallel dilution cultures were performed in microplate wells (nanocosms) and 11 bottles, The slope of nanocosm fluorescence to bottle fluorescence was ca 1, indicating that nanocosms mimicked bacterial abundance and growth in bottle cultures. Preservation of Escherichia coli with formaldehyde showed that there was an initial loss of dsDNA of about 10 to 15% with little subsequent loss for 2 wk, indicating that bacteria from growth experiments conducted in the field could be preserved for subsequent analysis in the laboratory, Bacterial cellular dsDNA content in 3 Minnesota lakes varied between 0.6 and 6.2 fg cell(-1) and was highest in the most eutrophic and most rapidly growing bacterial community, i.e., the more eutrophic lakes. These results suggest that the PicoGreen method is effective for growth bioassays in systems with moderate to high levels of bacterial productivity. PicoGreen coupled with a microplate fluorescence reader is a promising method for determining bacterial biomass and growth rates, especially in meso- to eutrophic systems.
引用
收藏
页码:65 / 74
页数:10
相关论文
共 33 条
[1]   BACTERIOPLANKTON GROWTH IN SEAWATER .1. GROWTH-KINETICS AND CELLULAR CHARACTERISTICS IN SEAWATER CULTURES [J].
AMMERMAN, JW ;
FUHRMAN, JA ;
HAGSTROM, A ;
AZAM, F .
MARINE ECOLOGY PROGRESS SERIES, 1984, 18 (1-2) :31-39
[2]   Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters [J].
Biddanda, B ;
Ogdahl, M ;
Cotner, J .
LIMNOLOGY AND OCEANOGRAPHY, 2001, 46 (03) :730-739
[3]  
BUTTON DK, 1993, HDB METHODS AQUATIC, P163
[4]  
CHESBRO W, 1990, FEMS MICROBIOL ECOL, V74, P103, DOI 10.1016/0378-1097(90)90546-3
[5]   BACTERIAL BIOMASS AND CELL-SIZE DISTRIBUTIONS IN LAKES - MORE AND LARGER CELLS IN ANOXIC WATERS [J].
COLE, JJ ;
PACE, ML ;
CARACO, NF ;
STEINHART, GS .
LIMNOLOGY AND OCEANOGRAPHY, 1993, 38 (08) :1627-1632
[6]   Phosphorus-limited bacterioplankton growth in the Sargasso Sea [J].
Cotner, JB ;
Ammerman, JW ;
Peele, ER ;
Bentzen, E .
AQUATIC MICROBIAL ECOLOGY, 1997, 13 (02) :141-149
[7]   EFFECTS OF NUTRIENTS ON SPECIFIC GROWTH-RATE OF BACTERIOPLANKTON IN OLIGOTROPHIC LAKE WATER CULTURES [J].
COVENEY, MF ;
WETZEL, RG .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1992, 58 (01) :150-156
[8]   SIMPLIFIED METHOD FOR DISSOLVED DNA DETERMINATION IN AQUATIC ENVIRONMENTS [J].
DEFLAUN, MF ;
PAUL, JH ;
DAVIS, D .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 1986, 52 (04) :654-659
[9]   Respiration rates in bacteria exceed phytoplankton production in unproductive aquatic systems [J].
delGiorgio, PA ;
Cole, JJ ;
Cimbleris, A .
NATURE, 1997, 385 (6612) :148-151
[10]  
El-Shaarawi A., 1978, Journal of Great Lakes Research, V4, P443