Short-term streamflow forecasting: ARIMA vs neural networks
被引:0
|
作者:
Frausto-Solis, Juan
论文数: 0引用数: 0
h-index: 0
机构:
Tecnol Monterrey, Campus Cuernavaca Autopista Sol Km 104,Colonia Re, Xochitepec 62790, Morelos, MexicoTecnol Monterrey, Campus Cuernavaca Autopista Sol Km 104,Colonia Re, Xochitepec 62790, Morelos, Mexico
Frausto-Solis, Juan
[1
]
Pita, Esmeralda
论文数: 0引用数: 0
h-index: 0
机构:
Inst Investigaciones Elect, Cuernavaca 62490, Morelos, MexicoTecnol Monterrey, Campus Cuernavaca Autopista Sol Km 104,Colonia Re, Xochitepec 62790, Morelos, Mexico
Pita, Esmeralda
[2
]
Lagunas, Javier
论文数: 0引用数: 0
h-index: 0
机构:
Inst Investigaciones Elect, Cuernavaca 62490, Morelos, MexicoTecnol Monterrey, Campus Cuernavaca Autopista Sol Km 104,Colonia Re, Xochitepec 62790, Morelos, Mexico
Lagunas, Javier
[2
]
机构:
[1] Tecnol Monterrey, Campus Cuernavaca Autopista Sol Km 104,Colonia Re, Xochitepec 62790, Morelos, Mexico
RECENT ADVANCES ON APPLIED MATHEMATICS: PROCEEDINGS OF THE AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '08)
|
2008年
关键词:
auto regressive integrated moving average;
artificial neural networks;
streamflow;
forecasting;
D O I:
暂无
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Streamflow forecasting is very important for water resources management and flood defence. In this paper two forecasting methods are compared: ARIMA versus a multilayer perceptron neural network. This comparison is done by forecasting a streamflow of a Mexican river. Surprising results showed that in a monthly basis, ARIMA has lower prediction errors than this Neural Network.