Short-term streamflow forecasting: ARIMA vs neural networks

被引:0
|
作者
Frausto-Solis, Juan [1 ]
Pita, Esmeralda [2 ]
Lagunas, Javier [2 ]
机构
[1] Tecnol Monterrey, Campus Cuernavaca Autopista Sol Km 104,Colonia Re, Xochitepec 62790, Morelos, Mexico
[2] Inst Investigaciones Elect, Cuernavaca 62490, Morelos, Mexico
来源
RECENT ADVANCES ON APPLIED MATHEMATICS: PROCEEDINGS OF THE AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '08) | 2008年
关键词
auto regressive integrated moving average; artificial neural networks; streamflow; forecasting;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Streamflow forecasting is very important for water resources management and flood defence. In this paper two forecasting methods are compared: ARIMA versus a multilayer perceptron neural network. This comparison is done by forecasting a streamflow of a Mexican river. Surprising results showed that in a monthly basis, ARIMA has lower prediction errors than this Neural Network.
引用
收藏
页码:402 / +
页数:2
相关论文
共 50 条
  • [1] Short term streamflow forecasting using artificial neural networks
    Zealand, CM
    Burn, DH
    Simonovic, SP
    JOURNAL OF HYDROLOGY, 1999, 214 (1-4) : 32 - 48
  • [2] Wavelet regression model for short-term streamflow forecasting
    Kisi, Ozgur
    JOURNAL OF HYDROLOGY, 2010, 389 (3-4) : 344 - 353
  • [3] Short-term ozone forecasting by artificial neural networks
    RuizSuarez, JC
    MayoraIbarra, OA
    TorresJimenez, J
    RuizSuarez, LG
    ADVANCES IN ENGINEERING SOFTWARE, 1995, 23 (03) : 143 - 149
  • [4] Cascaded artificial neural networks for short-term load forecasting
    AlFuhaid, AS
    ElSayed, MA
    Mahmoud, MS
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1997, 12 (04) : 1524 - 1529
  • [5] Short-term electric load forecasting using neural networks
    Ramezani, M
    Falaghi, H
    Haghifam, MR
    Shahryari, GA
    Eurocon 2005: The International Conference on Computer as a Tool, Vol 1 and 2 , Proceedings, 2005, : 1525 - 1528
  • [6] Short-term wind power forecasting in Portugal by neural networks and wavelet transform
    Catalao, J. P. S.
    Pousinho, H. M. I.
    Mendes, V. M. F.
    RENEWABLE ENERGY, 2011, 36 (04) : 1245 - 1251
  • [7] Improving short-term streamflow forecasting by flow mode clustering
    Liu, Shuqi
    Zhou, Xinzhi
    Li, Bo
    He, Xin
    Zhang, Yuexin
    Fu, Yi
    STOCHASTIC ENVIRONMENTAL RESEARCH AND RISK ASSESSMENT, 2023, 37 (05) : 1799 - 1819
  • [8] Short-Term Air Pollution Forecasting Using Embeddings in Neural Networks
    Ramentol, Enislay
    Grimm, Stefanie
    Stinzendoerfer, Moritz
    Wagner, Andreas
    ATMOSPHERE, 2023, 14 (02)
  • [9] Electricity price short-term forecasting using artificial neural networks
    Szkuta, BR
    Sanabria, LA
    Dillon, TS
    IEEE TRANSACTIONS ON POWER SYSTEMS, 1999, 14 (03) : 851 - 857
  • [10] Deep learning neural networks for short-term photovoltaic power forecasting
    Mellit, A.
    Pavan, A. Massi
    Lughi, V.
    RENEWABLE ENERGY, 2021, 172 : 276 - 288