Two-level Schwarz method for solving variational inequality with nonlinear source terms

被引:5
作者
Li, Chen-Liang [1 ,2 ]
Zeng, Jin-ping [3 ]
机构
[1] Guilin Univ Elect Technol, Coll Computat Sci & Math, Guilin 541004, Guangxi, Peoples R China
[2] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
[3] Hunan Univ, Dept Appl Math, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
variational inequality; nonlinear source term; two-level Schwarz method;
D O I
10.1016/j.cam.2006.11.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend the two-level Schwarz method to solve the variational inequality problems with nonlinear source terms, and establish a convergence theorem. The method converges within finite steps with an appropriate initial point. The numerical results show that the methods are efficient. (C) 2007 Published by Elsevier B.V.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 50 条
  • [11] A Tseng extragradient method for solving variational inequality problems in Banach spaces
    Oyewole, O. K.
    Abass, H. A.
    Mebawondu, A. A.
    Aremu, K. O.
    NUMERICAL ALGORITHMS, 2022, 89 (02) : 769 - 789
  • [12] An alternating inertial method for solving variational inequality problems on Hadamard manifolds
    Oyewole, Olawale K.
    Shehu, Yekini
    Reich, Simeon
    OPTIMIZATION, 2024,
  • [13] A Tseng extragradient method for solving variational inequality problems in Banach spaces
    O. K. Oyewole
    H. A. Abass
    A. A. Mebawondu
    K. O. Aremu
    Numerical Algorithms, 2022, 89 : 769 - 789
  • [14] Novel inertial extragradient method for solving pseudomonotone variational inequality problems
    Thong, Duong Viet
    Li, Xiao-Huan
    Dung, Vu Tien
    Huyen, Pham Thi Huong
    Tam, Hoang Thi Thanh
    OPTIMIZATION, 2024,
  • [15] Golden ratio method for solving monotone variational inequality problems in Hadamard spaces
    Salisu, Sani
    Sriwongsa, Songpon
    Kumam, Poom
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2024, 47 (12) : 10101 - 10116
  • [16] THE SECOND-ORDER DIFFERENTIAL EQUATION METHOD FOR SOLVING THE VARIATIONAL INEQUALITY PROBLEM
    Jia, Danna
    Wang, Li
    Sun, Juhe
    Zhuang, Huiting
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2024, 14 (02): : 760 - 777
  • [17] TWO INERTIAL EXTRAGRADIENT VISCOSITY ALGORITHMS FOR SOLVING VARIATIONAL INEQUALITY AND FIXED POINT PROBLEMS
    Abbas, Mujahid
    Iqbal, Hira
    JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 2020, 4 (03): : 377 - 398
  • [18] The hybrid steepest descent method for solving variational inequality over triple hierarchical problems
    Wairojjana, Nopparat
    Jitpeera, Thanyarat
    Kumam, Poom
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2012,
  • [19] Strong convergence of inertial subgradient extragradient method for solving variational inequality in Banach space
    Khan, A. R.
    Ugwunnadi, G. C.
    Makukula, Z. G.
    Abbas, M.
    CARPATHIAN JOURNAL OF MATHEMATICS, 2019, 35 (03) : 327 - 338
  • [20] A Seqential Constraint Method for Solving Variational Inequality over the Intersection of Fixed Point Sets
    Prangprakhon, Mootta
    Nimana, Nimit
    Petrot, Narin
    THAI JOURNAL OF MATHEMATICS, 2020, 18 (03): : 1105 - 1123