Two-level Schwarz method for solving variational inequality with nonlinear source terms

被引:5
作者
Li, Chen-Liang [1 ,2 ]
Zeng, Jin-ping [3 ]
机构
[1] Guilin Univ Elect Technol, Coll Computat Sci & Math, Guilin 541004, Guangxi, Peoples R China
[2] Hunan Normal Univ, Coll Math & Comp Sci, Changsha 410081, Hunan, Peoples R China
[3] Hunan Univ, Dept Appl Math, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
variational inequality; nonlinear source term; two-level Schwarz method;
D O I
10.1016/j.cam.2006.11.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we extend the two-level Schwarz method to solve the variational inequality problems with nonlinear source terms, and establish a convergence theorem. The method converges within finite steps with an appropriate initial point. The numerical results show that the methods are efficient. (C) 2007 Published by Elsevier B.V.
引用
收藏
页码:67 / 75
页数:9
相关论文
共 50 条
  • [1] Solving two-level variational inequality
    Kalashnikov, VV
    Kalashnikova, NI
    JOURNAL OF GLOBAL OPTIMIZATION, 1996, 8 (03) : 289 - 294
  • [2] Schwarz algorithm for the solution of variational inequalities with nonlinear source terms
    Zeng, JP
    Zhou, SZ
    APPLIED MATHEMATICS AND COMPUTATION, 1998, 97 (01) : 23 - 35
  • [3] The method for solving variational inequality problems with numerical results
    Sarawut Suwannaut
    Suthep Suantai
    Atid Kangtunyakarn
    Afrika Matematika, 2019, 30 : 311 - 334
  • [4] A mixed variational inequality method for solving Signorini problems
    Cheng, Yongfeng
    Nie, Zhibao
    Ding, Shijun
    Liu, Kaiyuan
    Ding, Mintao
    Fan, Zibo
    ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2023, 147 : 59 - 68
  • [5] The method for solving variational inequality problems with numerical results
    Suwannaut, Sarawut
    Suantai, Suthep
    Kangtunyakarn, Atid
    AFRIKA MATEMATIKA, 2019, 30 (1-2) : 311 - 334
  • [6] A modified subgradient extragradient method for solving the variational inequality problem
    Qiao-Li Dong
    Dan Jiang
    Aviv Gibali
    Numerical Algorithms, 2018, 79 : 927 - 940
  • [7] A modified subgradient extragradient method for solving the variational inequality problem
    Dong, Qiao-Li
    Jiang, Dan
    Gibali, Aviv
    NUMERICAL ALGORITHMS, 2018, 79 (03) : 927 - 940
  • [8] Optimal L∞-error estimate for variational inequalities with nonlinear source terms
    Boulbrachene, M
    APPLIED MATHEMATICS LETTERS, 2002, 15 (08) : 1013 - 1017
  • [9] A hybrid method without extrapolation step for solving variational inequality problems
    Malitsky, Yu. V.
    Semenov, V. V.
    JOURNAL OF GLOBAL OPTIMIZATION, 2015, 61 (01) : 193 - 202
  • [10] A hybrid method without extrapolation step for solving variational inequality problems
    Yu. V. Malitsky
    V. V. Semenov
    Journal of Global Optimization, 2015, 61 : 193 - 202