Iron as recyclable energy carrier: Feasibility study and kinetic analysis of iron oxide reduction

被引:32
作者
Kuhn, C. [1 ]
Duell, A. [1 ]
Rohlfs, P. [1 ]
Tischer, S. [2 ]
Boernhorst, M. [1 ]
Deutschmann, O. [1 ,2 ]
机构
[1] Karlsruhe Inst Technol KIT, Inst Chem Technol & Polymer Chem, Kaiserstr 12, D-76131 Karlsruhe, Germany
[2] Karlsruhe Inst Technol KIT, Inst Catalysis Res & Technol, Kaiserstr 12, D-76131 Karlsruhe, Germany
来源
APPLICATIONS IN ENERGY AND COMBUSTION SCIENCE | 2022年 / 12卷
关键词
Metal fuels; Iron; Cycle efficiency; Reduction; Kinetics; LOW-TEMPERATURE REDUCTION; PULVERIZED SPONGE IRON; ZERO-CARBON; LIQUID-HYDROGEN; METAL FUELS; COMBUSTION; BEHAVIOR; STORAGE; AMMONIA; FE2O3;
D O I
10.1016/j.jaecs.2022.100096
中图分类号
O414.1 [热力学];
学科分类号
摘要
Carbon-free and sustainable energy storage solutions are required to mitigate climate change. One possible solution, especially for stationary applications, could be the storage of energy in metal fuels. Energy can be stored through reduction of the oxide with green hydrogen and be released by combustion. In this work a feasibility study for iron as possible metal fuel considering the complete energy cycle is conducted. On the basis of equilibrium calculations it could be shown that the power-to-power efficiency of the iron/iron oxide cycle is 27 %. As technology development requires a more detailed description of both the reduction and the oxidation, a first outlook is given on the kinetic analysis of the reduction of iron oxides with hydrogen. Thermogravimetric experiments using Fe2O3, Fe3O4 and FeO indicate a three-step process for the reduction. The maximum reduction rate can be achieved with a hydrogen content of 25 %. Based on the experimental results a reaction mechanism and accompanied kinetic data were developed for description of Fe2O3 reduction with H2 under varying experimental conditions.
引用
收藏
页数:12
相关论文
共 83 条
[31]   Structures and burning velocities of flames in iron aerosols [J].
Hazenberg, T. ;
van Oijen, J. A. .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2021, 38 (03) :4383-4390
[32]   Reduction kinetics of combusted iron powder using hydrogen [J].
Hessels, C. J. M. ;
Homan, T. A. M. ;
Deen, N. G. ;
Tang, Y. .
POWDER TECHNOLOGY, 2022, 407
[33]  
Institute for Sustainable Process Technology, 2017, POW AMM FEAS STUD VA
[34]  
International Energy Agency, 2021, KEY WORLD EN STAT
[35]   Reduction behavior of iron oxides in hydrogen and carbon monoxide atmospheres [J].
Jozwiak, W. K. ;
Kaczmarek, E. ;
Maniecki, T. P. ;
Ignaczak, W. ;
Maniukiewicz, W. .
APPLIED CATALYSIS A-GENERAL, 2007, 326 (01) :17-27
[36]   Enabling the metal fuel economy: green recycling of metal fuels [J].
Julien, Philippe ;
Bergthorson, Jeffrey M. .
SUSTAINABLE ENERGY & FUELS, 2017, 1 (03) :615-625
[37]   Influence of microstructure and atomic-scale chemistry on the direct reduction of iron ore with hydrogen at 700 °C [J].
Kim, Se-Ho ;
Zhang, Xue ;
Ma, Yan ;
Souza Filho, Isnaldi R. ;
Schweinar, Kevin ;
Angenendt, Katja ;
Vogel, Dirk ;
Stephenson, Leigh T. ;
El-Zoka, Ayman A. ;
Mianroodi, Jaber Rezaei ;
Rohwerder, Michael ;
Gault, Baptiste ;
Raabe, Dierk .
ACTA MATERIALIA, 2021, 212
[38]   Development of 1 kW-class Ammonia-fueled Solid Oxide Fuel Cell Stack [J].
Kishimoto, M. ;
Muroyama, H. ;
Suzuki, S. ;
Saito, M. ;
Koide, T. ;
Takahashi, Y. ;
Horiuchi, T. ;
Yamasaki, H. ;
Matsumoto, S. ;
Kubo, H. ;
Takahashi, N. ;
Okabe, A. ;
Ueguchi, S. ;
Jun, M. ;
Tateno, A. ;
Matsuo, T. ;
Matsui, T. ;
Iwai, H. ;
Yoshida, H. ;
Eguchi, K. .
FUEL CELLS, 2020, 20 (01) :80-88
[39]  
Komatina M., 2004, Metalurgija, V10, P309, DOI [10.30544/378, DOI 10.30544/378]
[40]   Kinetic modeling and simulation of high-temperature by-product formation from urea decomposition [J].
Kuntz, C. ;
Kuhn, C. ;
Weickenmeier, H. ;
Tischer, S. ;
Boernhorst, M. ;
Deutschmann, O. .
CHEMICAL ENGINEERING SCIENCE, 2021, 246