Critical localization with van der Waals interactions

被引:0
作者
Nandkishore, Rahul [1 ,2 ,3 ]
机构
[1] Univ Colorado Boulder, Dept Phys, Boulder, CO 80309 USA
[2] Univ Colorado Boulder, Ctr Theory Quantum Matter, Boulder, CO 80309 USA
[3] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
关键词
MANY-BODY LOCALIZATION; VIBRATIONAL-MODES; ABSENCE; SYSTEM;
D O I
10.1103/PhysRevB.106.L060306
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
I discuss the quantum dynamics of strongly disordered quantum systems with critically long range interactions, decaying as 1/r2d in d spatial dimensions. I argue that, contrary to expectations, localization in such systems is stable at low orders in perturbation theory, giving rise to an unusual "critically many-body localized (MBL) regime." I discuss the phenomenology of this critical MBL regime, which includes distinctive signatures in entanglement, charge statistics, noise, and transport. Experimentally, such a critically localized regime can be realized in three-dimensional systems with van der Waals interactions, such as Rydberg atoms, and in one-dimensional systems with 1/r2 interactions, such as trapped ions. I estimate timescales on which high-order perturbative and nonperturbative (avalanche) phenomena may destabilize this critically MBL regime and conclude that the avalanche sets the limiting timescale, in the limit of strong disorder or weak interactions.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Photoinduced reversible gel-sol transitions of dicholesterol-linked azobenzene derivatives through breaking and reforming of van der Waals interactions [J].
Wu, Yeping ;
Wu, Si ;
Tian, Xiujie ;
Wang, Xin ;
Wu, Wenxuan ;
Zou, Gang ;
Zhang, Qijin .
SOFT MATTER, 2011, 7 (02) :716-721
[22]   Communications: A model study on the electronic predissociation of the NeBr2 van der Waals complex [J].
Sanz-Sanz, Cristina ;
Roncero, Octavio ;
Hernandez-Lamoneda, Ramon ;
Pio, Jordan M. ;
Taylor, Molly A. ;
Janda, Kenneth C. .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (22)
[23]   Delta Shocks and Vacuums to the Isentropic Euler Equations with the Flux Perturbation for van der Waals Gas [J].
Wang, Jinhuan ;
Nie, Yongbin .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2020, 2020 (2020)
[24]   Cataloging High-Quality Two-Dimensional van der Waals Materials with Flat Bands [J].
Duan, Jingyi ;
Ma, Da-Shuai ;
Zhang, Run-Wu ;
Jiang, Wei ;
Zhang, Zeying ;
Cui, Chaoxi ;
Yu, Zhi-Ming ;
Yao, Yugui .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (19)
[25]   Phenomenological Model of Interfacial Stress Transfer in Carbon Nanotube Reinforced Composites with van der Waals Effects [J].
Zhou, Li-Jun ;
Kang, Yi-Lan ;
Guo, Jian-Gang .
POLYMER COMPOSITES, 2011, 32 (07) :1069-1076
[26]   Second Osmotic Virial Coefficient from the Two-Component van der Waals Equation of State [J].
Widom, B. ;
Underwood, Robin C. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2012, 116 (31) :9492-9499
[27]   On the existence and regularity of solutions of semihyperbolic patches to 2-D Euler equations with van der Waals gas [J].
Barthwal, Rahul ;
Sekhar, T. Raja .
STUDIES IN APPLIED MATHEMATICS, 2022, 148 (02) :543-576
[28]   Nonequilibrium localization and the interplay between disorder and interactions [J].
Mascarenhas, Eduardo ;
Braganca, Helena ;
Drumond, R. ;
Aguiar, M. C. O. ;
Franca Santos, M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (19)
[29]   Spin-orbital excitations encoding the magnetic phase transition in the van der Waals antiferromagnet FePS3 [J].
Wei, Yuan ;
Tseng, Yi ;
Elnaggar, Hebatalla ;
Zhang, Wenliang ;
Asmara, Teguh Citra ;
Paris, Eugenio ;
Domaine, Gabriele ;
Strocov, Vladimir N. ;
Testa, Luc ;
Favre, Virgile ;
Di Luca, Mario ;
Banerjee, Mitali ;
Wildes, Andrew R. ;
de Groot, Frank M. F. ;
Ronnow, Henrik M. ;
Schmitt, Thorsten .
NPJ QUANTUM MATERIALS, 2025, 10 (01)
[30]   Spatio-temporal strain analysis and thermal transport modulation in plastically deformed InSe van der Waals crystals [J].
Ma, Yupeng ;
Pan, Zhenyu ;
Liu, Yifei ;
Zhao, Kunpeng ;
Xiao, Jie ;
Nam, Donguk ;
Wei, Tian-Ran ;
Shi, Xun .
MATERIALS TODAY ENERGY, 2024, 43