Critical localization with van der Waals interactions

被引:0
|
作者
Nandkishore, Rahul [1 ,2 ,3 ]
机构
[1] Univ Colorado Boulder, Dept Phys, Boulder, CO 80309 USA
[2] Univ Colorado Boulder, Ctr Theory Quantum Matter, Boulder, CO 80309 USA
[3] Stanford Univ, Dept Phys, Stanford, CA 94305 USA
关键词
MANY-BODY LOCALIZATION; VIBRATIONAL-MODES; ABSENCE; SYSTEM;
D O I
10.1103/PhysRevB.106.L060306
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
I discuss the quantum dynamics of strongly disordered quantum systems with critically long range interactions, decaying as 1/r2d in d spatial dimensions. I argue that, contrary to expectations, localization in such systems is stable at low orders in perturbation theory, giving rise to an unusual "critically many-body localized (MBL) regime." I discuss the phenomenology of this critical MBL regime, which includes distinctive signatures in entanglement, charge statistics, noise, and transport. Experimentally, such a critically localized regime can be realized in three-dimensional systems with van der Waals interactions, such as Rydberg atoms, and in one-dimensional systems with 1/r2 interactions, such as trapped ions. I estimate timescales on which high-order perturbative and nonperturbative (avalanche) phenomena may destabilize this critically MBL regime and conclude that the avalanche sets the limiting timescale, in the limit of strong disorder or weak interactions.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Wavelike charge density fluctuations and van der Waals interactions at the nanoscale
    Ambrosetti, Alberto
    Ferri, Nicola
    DiStasio, Robert A., Jr.
    Tkatchenko, Alexandre
    SCIENCE, 2016, 351 (6278) : 1171 - 1176
  • [2] Causality, universality, and effective field theory for van der Waals interactions
    Elhatisari, Serdar
    Koenig, Sebastian
    Lee, Dean
    Hammer, H. -W.
    PHYSICAL REVIEW A, 2013, 87 (05):
  • [3] Reflection of shock fronts in a van der Waals fluid
    Zhang, Shuyi
    Wang, Yaguang
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2013, 34 (06) : 927 - 956
  • [4] The limits of Riemann solutions to the relativistic van der Waals fluid
    Zhang, Yu
    Wang, Jinhuan
    APPLICABLE ANALYSIS, 2021, 100 (14) : 2989 - 3010
  • [5] Electronic Absorption Spectra of the RbAr Van der Waals Complex
    Dhiflaoui, J.
    Berriche, H.
    Heaven, M. C.
    PROCEEDINGS OF THE FIFTH SAUDI PHYSICAL SOCIETY CONFERENCE (SPS5), 2011, 1370
  • [6] Quantum Phase Transitions of Interlayer Excitons in van der Waals Heterostructures
    Deng, Jia-Pei
    Wang, Zi-Wu
    Cui, Yu
    Liu, Yi-Yan
    Ma, Xin-Jun
    Li, Shao-Juan
    Li, Zhi-Qing
    PHYSICA STATUS SOLIDI-RAPID RESEARCH LETTERS, 2024, 18 (02):
  • [7] Role of van der Waals, Electrostatic, and Hydrogen-Bond Interactions for the Relative Stability of Cellulose Iβ and II Crystals
    Kullmann, Richard
    Delbianco, Martina
    Roth, Christian
    Weikl, Thomas R.
    JOURNAL OF PHYSICAL CHEMISTRY B, 2024, 128 (49) : 12114 - 12121
  • [8] Liquid-liquid transition as a perturbation on the van der Waals' equation
    Simoes, M.
    Pazetti, M.
    Yamaguti, K.
    Palangana, A. J.
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 319
  • [9] van der Waals dephasing for Dicke subradiance in cold atomic clouds
    Cipris, Ana
    Bachelard, Romain
    Kaiser, Robin
    Guerin, William
    PHYSICAL REVIEW A, 2021, 103 (03)
  • [10] Simple model for analyzing Efimov energy and three-body recombination of three identical bosons with van der Waals interactions
    Li, Jing-Lun
    Hu, Xue-Jin
    Han, Yong-Chang
    Cong, Shu-Lin
    PHYSICAL REVIEW A, 2016, 94 (03)