Retrieving Quantum Information with Active Learning

被引:15
|
作者
Ding, Yongcheng [1 ,2 ,3 ]
Martin-Guerrero, Jose D. [4 ]
Sanz, Mikel [3 ]
Magdalena-Benedicto, Rafael [4 ]
Chen, Xi [1 ,2 ,3 ]
Solano, Enrique [1 ,2 ,3 ,5 ,6 ]
机构
[1] Shanghai Univ, Int Ctr Quantum Artificial Intelligence Sci & Tec, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
[3] Univ Basque Country, Dept Phys Chem, UPV EHU, Apartado 644, Bilbao 48080, Spain
[4] Univ Valencia, Elect Engn Dept, IDAL, Avinguda Univ S-N, E-46100 Valencia, Spain
[5] Ikerbasque, Basque Fdn Sci, Maria Diaz de Haro 3, Bilbao 48013, Spain
[6] IQM, Munich, Germany
基金
中国国家自然科学基金;
关键词
ALGORITHM;
D O I
10.1103/PhysRevLett.124.140504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Active learning is a machine learning method aiming at optimal design for model training. At variance with supervised learning, which labels all samples, active learning provides an improved model by labeling samples with maximal uncertainty according to the estimation model. Here, we propose the use of active learning for efficient quantum information retrieval, which is a crucial task in the design of quantum experiments. Meanwhile, when dealing with large data output, we employ active learning for the sake of classification with minimal cost in fidelity loss. Indeed, labeling only 5% samples, we achieve almost 90% rate estimation. The introduction of active learning methods in the data analysis of quantum experiments will enhance applications of quantum technologies.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Retrieving High Temporal Resolution Aerosol Layer Height From EPIC/DSCOVR Using Machine Learning Method
    Tian, Xiaoqing
    Gao, Ling
    Li, Chengcai
    Li, Jun
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 11
  • [42] Pool-based active learning framework for concept prerequisite learning
    He, Yu
    Pan, Yigong
    Hu, Xinying
    Sun, Guangzhong
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2024, 46 (01) : 1771 - 1787
  • [43] Active Learning by Extreme Learning Machine with Considering Exploration and Exploitation Simultaneously
    Gu, Yan
    Yu, Hualong
    Yang, Xibei
    Gao, Shang
    NEURAL PROCESSING LETTERS, 2023, 55 (04) : 5245 - 5267
  • [44] Active learning with extreme learning machine for online imbalanced multiclass classification
    Qin, Jiongming
    Wang, Cong
    Zou, Qinhong
    Sun, Yubin
    Chen, Bin
    KNOWLEDGE-BASED SYSTEMS, 2021, 231
  • [45] Advances in Quantum Machine Learning and Deep Learning for Image Classification: A Survey
    Kharsa, Ruba
    Bouridane, Ahmed
    Amira, Abbes
    NEUROCOMPUTING, 2023, 560
  • [46] Improving the Efficiency of Quantum Circuits for Information Set Decoding
    Perriello, Simone
    Barenghi, Alessandro
    Pelosi, Gerardo
    ACM TRANSACTIONS ON QUANTUM COMPUTING, 2023, 4 (04):
  • [47] Initialization and readout of spin chains for quantum information transport
    Kaur, Gurneet
    Cappellaro, Paola
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [48] NMR Quantum Information Processing: Indian Contributions and Perspectives
    Dorai, Kavita
    Arvind
    JOURNAL OF THE INDIAN INSTITUTE OF SCIENCE, 2023, 103 (02) : 569 - 589
  • [49] Active Learning Based on Locally Linear Reconstruction
    Zhang, Lijun
    Chen, Chun
    Bu, Jiajun
    Cai, Deng
    He, Xiaofei
    Huang, Thomas S.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2011, 33 (10) : 2026 - 2038
  • [50] Retrieving XCO2 from GOSAT FTS over East Asia Using Simultaneous Aerosol Information from CAI
    Kim, Woogyung
    Kim, Jhoon
    Jung, Yeonjin
    Boesch, Hartmut
    Lee, Hanlim
    Lee, Sanghee
    Goo, Tae-Young
    Jeong, Ukkyo
    Kim, Mijin
    Cho, Chun-Ho
    Ou, Mi-Lim
    REMOTE SENSING, 2016, 8 (12)