Retrieving Quantum Information with Active Learning

被引:15
|
作者
Ding, Yongcheng [1 ,2 ,3 ]
Martin-Guerrero, Jose D. [4 ]
Sanz, Mikel [3 ]
Magdalena-Benedicto, Rafael [4 ]
Chen, Xi [1 ,2 ,3 ]
Solano, Enrique [1 ,2 ,3 ,5 ,6 ]
机构
[1] Shanghai Univ, Int Ctr Quantum Artificial Intelligence Sci & Tec, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Dept Phys, Shanghai 200444, Peoples R China
[3] Univ Basque Country, Dept Phys Chem, UPV EHU, Apartado 644, Bilbao 48080, Spain
[4] Univ Valencia, Elect Engn Dept, IDAL, Avinguda Univ S-N, E-46100 Valencia, Spain
[5] Ikerbasque, Basque Fdn Sci, Maria Diaz de Haro 3, Bilbao 48013, Spain
[6] IQM, Munich, Germany
基金
中国国家自然科学基金;
关键词
ALGORITHM;
D O I
10.1103/PhysRevLett.124.140504
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Active learning is a machine learning method aiming at optimal design for model training. At variance with supervised learning, which labels all samples, active learning provides an improved model by labeling samples with maximal uncertainty according to the estimation model. Here, we propose the use of active learning for efficient quantum information retrieval, which is a crucial task in the design of quantum experiments. Meanwhile, when dealing with large data output, we employ active learning for the sake of classification with minimal cost in fidelity loss. Indeed, labeling only 5% samples, we achieve almost 90% rate estimation. The introduction of active learning methods in the data analysis of quantum experiments will enhance applications of quantum technologies.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Robust active noise control: An information theoretic learning approach
    Kurian, Nikhil Cherian
    Patel, Kashyap
    George, Nithin V.
    APPLIED ACOUSTICS, 2017, 117 : 180 - 184
  • [2] Method for Retrieving Digital Agricultural Text Information Based on Local Matching
    Song, Yue
    Wang, Minjuan
    Gao, Wanlin
    SYMMETRY-BASEL, 2020, 12 (07):
  • [3] From Counting to Retrieving: Neural Networks Underlying Alphabet Arithmetic Learning
    Fias, Wim
    Sahan, Muhammet Ikbal
    Ansari, Daniel
    Lyons, Ian M.
    JOURNAL OF COGNITIVE NEUROSCIENCE, 2022, 34 (01) : 16 - 33
  • [4] Retrieving Tract Variables From Acoustics: A Comparison of Different Machine Learning Strategies
    Mitra, Vikramjit
    Nam, Hosung
    Espy-Wilson, Carol Y.
    Saltzman, Elliot
    Goldstein, Louis
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2010, 4 (06) : 1027 - 1045
  • [5] Band target entropy minimization for retrieving the information of individual components from overlapping chromatographic data
    Xia, Zhenzhen
    Liu, Yan
    Cai, Wensheng
    Shao, Xueguang
    JOURNAL OF CHROMATOGRAPHY A, 2015, 1411 : 110 - 115
  • [6] A parallel quantum eigensolver for quantum machine learning
    Yang, Fan
    Zhao, Dafa
    Wei, Chao
    Chen, Xinyu
    Wei, Shijie
    Wang, Hefeng
    Long, Guilu
    Xin, Tao
    NEW JOURNAL OF PHYSICS, 2024, 26 (04):
  • [7] A Machine Learning Approach to Retrieving Aerosol Optical Depth Using Solar Radiation Measurements
    Logothetis, Stavros-Andreas
    Salamalikis, Vasileios
    Kazantzidis, Andreas
    REMOTE SENSING, 2024, 16 (07)
  • [8] Unsupervised Active Learning via Subspace Learning
    Li, Changsheng
    Mao, Kaihang
    Liang, Lingyan
    Ren, Dongchun
    Zhang, Wei
    Yuan, Ye
    Wang, Guoren
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 8332 - 8339
  • [9] Retrieving Snow Depth Information From AMSR2 Data for Qinghai-Tibet Plateau
    Wang, Jianshun
    Huang, Xiaodong
    Wang, Yunlong
    Liang, Tiangang
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 : 752 - 768
  • [10] Quantum geometric machine learning for quantum circuits and control
    Perrier, Elija
    Tao, Dacheng
    Ferrie, Chris
    NEW JOURNAL OF PHYSICS, 2020, 22 (10)