A NUMERICAL APPROACH RELATED TO DEFECT-TYPE THEORIES FOR SOME WEAKLY RANDOM PROBLEMS IN HOMOGENIZATION

被引:28
作者
Anantharaman, A. [1 ]
Le Bris, C. [1 ]
机构
[1] Univ Paris Est, CERMICS, Project Team Micmac, INRIA Ecole Ponts, F-77455 Marne La Vallee 2, France
关键词
homogenization; random media; defects; STOCHASTIC HOMOGENIZATION; COMPOSITE-MATERIAL; EQUATIONS;
D O I
10.1137/10079639X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present in this paper an approach for computing the homogenized behavior of a medium that is a small random perturbation of a periodic reference material. The random perturbation we consider is, in a sense made precise in our work, a rare event at the microscopic level. It, however, affects the macroscopic properties of the material, and we indeed provide a method to compute the first-and second-order corrections. To this end, we formally establish an asymptotic expansion of the macroscopic properties. Our perturbative approach shares common features with a defect-type theory of solid state physics. The computational efficiency of the approach is demonstrated.
引用
收藏
页码:513 / 544
页数:32
相关论文
共 16 条
  • [1] Optimal design in small amplitude homogenization
    Allaire, Gregoire
    Gutierrez, Sergio
    [J]. ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2007, 41 (03): : 543 - 574
  • [2] Anantharaman A., 2011, THESIS U PARIS EST
  • [3] ANANTHARAMAN A, ELEMENTS MATH FDN NU
  • [4] Homogenization of a weakly randomly perturbed periodic material
    Anantharaman, Arnaud
    Le Bris, Claude
    [J]. COMPTES RENDUS MATHEMATIQUE, 2010, 348 (9-10) : 529 - 534
  • [5] COMPACTNESS METHODS IN THE THEORY OF HOMOGENIZATION
    AVELLANEDA, M
    LIN, FH
    [J]. COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1987, 40 (06) : 803 - 847
  • [6] An asymptotic formula for the voltage potential in a perturbed ε-periodic composite medium containing misplaced inclusions of size ε
    Ben Hassen, M. F.
    Bonnetier, E.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2006, 136 : 669 - 700
  • [7] Stochastic homogenization and random lattices
    Blanc, X.
    Le Bris, C.
    Lions, P.-L.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2007, 88 (01): : 34 - 63
  • [8] Approximations of effective coefficients in stochastic homogenization
    Bourgeat, A
    Piatnitski, A
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2004, 40 (02): : 153 - 165
  • [9] Numerical approximation of a class of problems in stochastic homogenization
    Costaouec, Ronan
    Le Bris, Claude
    Legoll, Frederic
    [J]. COMPTES RENDUS MATHEMATIQUE, 2010, 348 (1-2) : 99 - 103
  • [10] THE GREEN-FUNCTION FOR UNIFORMLY ELLIPTIC-EQUATIONS
    GRUTER, M
    WIDMAN, KO
    [J]. MANUSCRIPTA MATHEMATICA, 1982, 37 (03) : 303 - 342