High performance polyurethane-polyacrylic acid polymer binders for silicon microparticle anodes in lithium-ion batteries

被引:17
作者
Niu, Sulin [1 ]
Zhao, Min [2 ]
Ma, Lei [1 ]
Zhao, Fangfang [1 ]
Zhang, Yu [1 ]
Tang, Gen [2 ]
Wang, Yue [2 ]
Pang, Aimin [2 ]
Li, Wei [2 ]
Wei, Liangming [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Dept Microelect & Nanosci, Key Lab Thin Film & Microfabricat Technol,Minist, Dong Chuan Rd 800, Shanghai 200240, Peoples R China
[2] Hubei Inst Aerosp Chemotechnol, Sci & Technol Aerosp Chem Power Lab, Xiangyang 441003, Hubei, Peoples R China
来源
SUSTAINABLE ENERGY & FUELS | 2022年 / 6卷 / 05期
基金
中国国家自然科学基金;
关键词
SI ELECTRODES; CHITOSAN; STORAGE; DESIGN;
D O I
10.1039/d1se01820e
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As a potential anode material for lithium-ion batteries (LIBs), silicon (Si) has been widely studied because of its high capacity, appropriate potential and abundant sources. However, due to the huge volume changes of the silicon anodes during cycling, the capacity decays rapidly after a few cycles. As an important component of LIBs, polymer binders play a big role in alleviating the volume effect of silicon. The new binders developed at present could effectively improve the swelling problem of silicon, stabilize silicon anodes and improve the cycling stability of LIBs. Nevertheless, their synthesis usually involves complicated reactions. Moreover, it is a bigger challenge when a polymeric binder is used to stabilize cheap micro-silicon-particles. Herein, we present a simple process to prepare a three-dimensional polyurethane-polyacrylic acid network binder for silicon anodes by simply mixing readily available polyurethane and polyacrylic acid in water. This binder can effectively stabilize silicon anodes during cycling and improve the cycling stability of the silicon anodes. The capacity retention of the silicon anode is 70.3% after 200 cycles and 60.9% after 500 cycles, with a high specific capacity of 1934 mA h g(-1) after 500 cycles, showing excellent electrochemical properties.
引用
收藏
页码:1301 / 1311
页数:11
相关论文
共 50 条
[31]   A biopolymer network for lean binder in silicon nanoparticle anodes for lithium-ion batteries [J].
Li, Zeheng ;
Wan, Zhengwei ;
Wu, Gu ;
Wu, Zhuoying ;
Zeng, Xiaomin ;
Gan, Lu ;
Liu, Jie ;
Wu, Shuxing ;
Lin, Zhan ;
Gao, Xuehui ;
Ling, Min ;
Liang, Chengdu .
SUSTAINABLE MATERIALS AND TECHNOLOGIES, 2021, 30
[32]   A β-FeOOH/MXene sandwich for high-performance anodes in lithium-ion batteries [J].
He, Lu ;
Tan, Chuan ;
Sheng, Chuanchao ;
Chen, Yuanzhao ;
Yu, Fengjiao ;
Chen, Yuhui .
DALTON TRANSACTIONS, 2020, 49 (27) :9268-9273
[33]   High-Performance Lithium Ion Batteries Combining Submicron Silicon and Thiophene-Terephthalic Acid-Conjugated Polymer Binders [J].
Wang, Kuo-Lung ;
Chen, Kuan-Ting ;
Yi, Yuan-Hsing ;
Hung, Yi-Hao ;
Tuan, Hsing-Yu ;
Horie, Masaki .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (02) :1043-1049
[34]   Phosphorus-doped silicon nanorod anodes for high power lithium-ion batteries [J].
Yan, Chao ;
Liu, Qianru ;
Gao, Jianzhi ;
Yang, Zhibo ;
He, Deyan .
BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2017, 8 :222-228
[35]   N-doped graphitic self-encapsulation for high performance silicon anodes in lithium-ion batteries [J].
Lee, Won Jun ;
Hwang, Tae Hoon ;
Hwang, Jin Ok ;
Kim, Hyun Wook ;
Lim, Joonwon ;
Jeong, Hu Young ;
Shim, Jongwon ;
Han, Tae Hee ;
Kim, Je Young ;
Choi, Jang Wook ;
Kim, Sang Ouk .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (02) :621-626
[36]   To achieve controlled specific capacities of silicon-based anodes for high-performance lithium-ion batteries [J].
Ma, Yaodong ;
Guo, Pengqian ;
Liu, Mengting ;
Cheng, Pu ;
Zhang, Tianyao ;
Liu, Jiande ;
Liu, Dequan ;
He, Deyan .
JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 905
[37]   A Quadruple-Hydrogen-Bonded Supramolecular Binder for High-Performance Silicon Anodes in Lithium-Ion Batteries [J].
Zhang, Guangzhao ;
Yang, Yu ;
Chen, Yunhua ;
Huang, Jun ;
Zhang, Tian ;
Zeng, Hongbo ;
Wang, Chaoyang ;
Liu, Gao ;
Deng, Yonghong .
SMALL, 2018, 14 (29)
[38]   Hierarchical Carbon Shell Compositing Microscale Silicon Skeleton as High-Performance Anodes for Lithium-Ion Batteries [J].
An, Weili ;
He, Peng ;
Xiao, Chengmao ;
Guo, Eming ;
Pang, Chunlei ;
He, Xueqin ;
Ren, Jianguo ;
Yuan, Guohui ;
Du, Ning ;
Yang, Deren .
ACS APPLIED ENERGY MATERIALS, 2021, 4 (05) :4976-4985
[39]   An esterified cross-linked polymer binder for high-rate stabilised silicon anodes in lithium-ion batteries [J].
Liu, Lingbin ;
Guo, Haiyan ;
Yu, Yuxiu ;
Zhang, Qiang ;
Liu, Yaodong ;
Li, Nanwen .
ELECTROCHIMICA ACTA, 2025, 519
[40]   High-Performance Porous Silicon/Nanosilver Anodes from Industrial Low-Grade Silicon for Lithium-Ion Batteries [J].
Xi, Fengshuo ;
Zhang, Zhao ;
Wan, Xiaohan ;
Li, Shaoyuan ;
Ma, Wenhui ;
Chen, Xiuhua ;
Chen, Ran ;
Luo, Bin ;
Wang, Lianzhou .
ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (43) :49080-49089