Heterogeneous immunoassays in microfluidic format using fluorescence detection with integrated amorphous silicon photodiodes

被引:24
作者
Pereira, A. T. [1 ,2 ,3 ]
Novo, P. [1 ,2 ]
Prazeres, D. M. F. [3 ,4 ]
Chu, V. [1 ,2 ]
Conde, J. P. [1 ,2 ,4 ]
机构
[1] INESC Microsistemas & Nanotecnol, P-1000029 Lisbon, Portugal
[2] IN Inst Nanosci & Nanotechnol, P-1000029 Lisbon, Portugal
[3] Inst Super Tecn, IBB, P-1049001 Lisbon, Portugal
[4] Inst Super Tecn, Dept Chem & Biol Engn, P-1049001 Lisbon, Portugal
关键词
HUMAN SERUM SAMPLES; ON-A-CHIP; CHEMILUMINESCENT DETECTION; MICROCHIP ELECTROPHORESIS; IMMUNOSENSOR; SYSTEMS; DEVICE; POLY(DIMETHYLSILOXANE); ANTIBODIES; QUANTIFICATION;
D O I
10.1063/1.3553014
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Miniaturization of immunoassays through microfluidic technology has the potential to decrease the time and the quantity of reactants required for analysis, together with the potential of achieving multiplexing and portability. A lab-on-chip system incorporating a thin-film amorphous silicon (a-Si:H) photodiode microfabricated on a glass substrate with a thin-film amorphous silicon-carbon alloy directly deposited above the photodiode and acting as a fluorescence filter is integrated with a polydimethylsiloxane-based microfluidic network for the direct detection of antibody-antigen molecular recognition reactions using fluorescence. The model immunoassay used consists of primary antibody adsorption to the microchannel walls followed by its recognition by a secondary antibody labeled with a fluorescent quantum-dot tag. The conditions for the flow-through analysis in the microfluidic format were defined and the total assay time was 30 min. Specific molecular recognition was quantitatively detected. The measurements made with the a-Si:H photodiode are consistent with that obtained with a fluorescence microscope and both show a linear dependence on the antibody concentration in the nanomolar-micromolar range. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3553014]
引用
收藏
页数:13
相关论文
共 65 条
[1]   Microfluidic immunosensor systems [J].
Bange, A ;
Halsall, HB ;
Heineman, WR .
BIOSENSORS & BIOELECTRONICS, 2005, 20 (12) :2488-2503
[2]  
BERK DA, 1993, BIOPHYS J, V65, P2428, DOI 10.1016/S0006-3495(93)81326-2
[3]  
Bruus H., 2007, Theoretical microfluidics
[4]   Amorphous silicon sensors for single and multicolor detection of biomolecules [J].
Caputo, D. ;
de Cesare, G. ;
Nascetti, A. ;
Negri, Rodolfo ;
Scipinotti, R. .
IEEE SENSORS JOURNAL, 2007, 7 (9-10) :1274-1280
[5]   Microchip-based capillary electrophoresis for immunoassays: Analysis of monoclonal antibodies and theophylline [J].
Chiem, N ;
Harrison, DJ .
ANALYTICAL CHEMISTRY, 1997, 69 (03) :373-378
[6]  
Chiem NH, 1998, CLIN CHEM, V44, P591
[7]   An integrated microfluidic biochemical detection system for protein analysis with magnetic bead-based sampling capabilities [J].
Choi, JW ;
Oh, KW ;
Thomas, JH ;
Heineman, WR ;
Halsall, HB ;
Nevin, JH ;
Helmicki, AJ ;
Henderson, HT ;
Ahn, CH .
LAB ON A CHIP, 2002, 2 (01) :27-30
[8]   Spectral selectivity constraints in fluorescence detection of biomolecules using amorphous silicon based detectors [J].
Conde, J. P. ;
Joskowiak, A. ;
Lipovsek, B. ;
Pimentel, A. ;
Pereira, A. T. ;
Santos, M. ;
Krc, J. ;
Topic, M. ;
Prazeres, D. M. F. ;
Chu, V. .
PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 7 NO 3-4, 2010, 7 (3-4) :1156-1159
[9]   Optical filtering technologies for integrated fluorescence sensors [J].
Dandin, Marc ;
Abshire, Pamela ;
Smela, Elisabeth .
LAB ON A CHIP, 2007, 7 (08) :955-977
[10]  
Delamarche E., 2004, NANOBIOTECHNOLOGY, P31