Electrochemical Reduction of Gaseous Nitrogen Oxides on Transition Metals at Ambient Conditions

被引:190
作者
Ko, Byung Hee [1 ]
Hasa, Bjorn [1 ]
Shin, Haeun [1 ]
Zhao, Yaran [1 ]
Jiao, Feng [1 ]
机构
[1] Univ Delaware, Ctr Catalyt Sci & Technol, Dept Chem & Biomol Engn, Newark, DE 19716 USA
关键词
NITRIC-OXIDE; ELECTROREDUCTION; NOX; CATALYSTS; ABATEMENT; EXHAUST; PT(111);
D O I
10.1021/jacs.1c10535
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Mitigating nitrogen oxide (NOx) emissions is critical to tackle global warming and improve air quality. Conventional NOx abatement technologies for emission control suffer from a low efficiency at near ambient temperatures. Herein, we show an electrochemical pathway to reduce gaseous NOx that can be conducted at high reaction rates (400 mA cm(-1)) under ambient conditions. Various transition metals are evaluated for electrochemical reduction of NO and N2O to reveal the role of electrocatalyst in determining the product selectivity. Specifically, Cu is highly selective toward NH3 formation with >80% Faradaic efficiency in NO electroreduction. Furthermore, the partial pressure study of NO electroreduction revealed that a high NO coverage facilitates the N-N coupling reaction. In acidic electrolytes, the formation of NH3 is greatly favored, whereas the N-2 production is suppressed. Additional mechanistic studies were conducted by using flow electrochemical mass spectrometry to gain further insights into reaction pathways. This work provides a promising avenue toward abating gaseous NOx emissions at ambient conditions by using renewable electricity.
引用
收藏
页码:1258 / 1266
页数:9
相关论文
共 42 条
[1]   A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements [J].
Andersen, Suzanne Z. ;
Colic, Viktor ;
Yang, Sungeun ;
Schwalbe, Jay A. ;
Nielander, Adam C. ;
McEnaney, Joshua M. ;
Enemark-Rasmussen, Kasper ;
Baker, Jon G. ;
Singh, Aayush R. ;
Rohr, Brian A. ;
Statt, Michael J. ;
Blair, Sarah J. ;
Mezzavilla, Stefano ;
Kibsgaard, Jakob ;
Vesborg, Peter C. K. ;
Cargnello, Matteo ;
Bent, Stacey F. ;
Jaramillo, Thomas F. ;
Stephens, Ifan E. L. ;
Norskov, Jens K. ;
Chorkendorff, Ib .
NATURE, 2019, 570 (7762) :504-+
[2]   Doping strain induced bi-Ti3+ pairs for efficient N2 activation and electrocatalytic fixation [J].
Cao, Na ;
Chen, Zheng ;
Zang, Ketao ;
Xu, Jie ;
Zhong, Jun ;
Luo, Jun ;
Xu, Xin ;
Zheng, Gengfeng .
NATURE COMMUNICATIONS, 2019, 10 (1)
[3]   ELECTROCATALYSIS OF NITRIC-OXIDE REDUCTION BY WATER-SOLUBLE COBALT PORPHYRIN - SPECTRAL AND ELECTROCHEMICAL STUDIES [J].
CHENG, SH ;
SU, YO .
INORGANIC CHEMISTRY, 1994, 33 (25) :5847-5854
[4]   Elucidation of Pathways for NO Electroreduction on Pt(111) from First Principles [J].
Clayborne, Andre ;
Chun, Hee-Joon ;
Rankin, Rees B. ;
Greeley, Jeff .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (28) :8255-8258
[5]   Mechanistic study on the electrocatalytic reduction of nitric oxide on transition-metal electrodes [J].
de Vooys, ACA ;
Koper, MTM ;
van Santen, RA ;
van Veen, JAR .
JOURNAL OF CATALYSIS, 2001, 202 (02) :387-394
[6]   Mechanistic study of the nitric oxide reduction on a polycrystalline platinum electrode [J].
de Vooys, ACA ;
Koper, MTM ;
van Santen, RA ;
van Veen, JAR .
ELECTROCHIMICA ACTA, 2001, 46 (06) :923-930
[7]   Powering denitrification: the perspectives of electrocatalytic nitrate reduction [J].
Duca, Matteo ;
Koper, Marc T. M. .
ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (12) :9726-9742
[8]   A state-of-the-art review on nitrous oxide control from waste treatment and industrial sources [J].
Frutos, Osvaldo D. ;
Quijano, Guillermo ;
Aizpuru, Aitor ;
Munoz, Raul .
BIOTECHNOLOGY ADVANCES, 2018, 36 (04) :1025-1037
[9]  
GAY S. W., 2005, VIRGINIA COOPERATIVE
[10]   Achieving a Record-High Yield Rate of 120.9 μgNH3 mgcat-1. h-1 for N2 Electrochemical Reduction over Ru Single-Atom Catalysts [J].
Geng, Zhigang ;
Liu, Yan ;
Kong, Xiangdong ;
Li, Pai ;
Li, Kan ;
Liu, Zhongyu ;
Du, Junjie ;
Shu, Miao ;
Si, Rui ;
Zeng, Jie .
ADVANCED MATERIALS, 2018, 30 (40)