Mineral composition of cultured ginseng cells

被引:0
|
作者
Sovetkina, TM
Kalenik, TK
Bulgakov, VP
Yasnetskaya, EG
Zhuravlev, YN
机构
[1] Far Eastern State Acad Econ & Management, Vladivostok 690019, Russia
[2] Russian Acad Sci, Far eastern Div, Inst Biol & Soil Sci, Vladivostok 690022, Russia
关键词
Spectroscopy; Atom Absorption; Atom Absorption Spectroscopy; Absorption Spectroscopy; Mineral Component;
D O I
10.1023/A:1010241520688
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
The contents of macroelements and microelements in ginseng roots and callus cultures was determined by atom absorption spectroscopy. Ginseng cells and tissues were shown to accumulate considerable amounts of microelements. The content of six of the eleven mineral components studied (K, Ca, Na, Mo, Mn, and Cr) in callus cultures was higher than that in roots of agricultural ginseng plants. We revealed good correlations between the contents of microelements (K, Ca, and Mg), as well as between the concentrations of macroelements (Mo, Li, Cu, and Cr), in ginseng cultures. The ability to accumulate elements varied between ginseng species, which was probably related to their genetic features. Our findings indicate that cultured ginseng cells hold much promise as a source of microelements.
引用
收藏
页码:297 / 300
页数:4
相关论文
共 50 条
  • [1] Mineral Composition of Cultured Ginseng Cells
    T. M. Sovetkina
    T. K. Kalenik
    V. P. Bulgakov
    E. G. Yasnetskaya
    Yu. N. Zhuravlev
    Applied Biochemistry and Microbiology, 2001, 37 : 297 - 300
  • [2] Mineral composition and clinical aspects of urolithiasis in cats in Brazil
    Gomes, V. R.
    Ariza, P. C.
    Silva, M. A. M.
    Schulz Jr, F. J.
    Oliveira, H. F.
    Queiroz, L. L.
    Borges, N. C.
    Bragato, N.
    Fioravanti, M. C. S.
    ARQUIVO BRASILEIRO DE MEDICINA VETERINARIA E ZOOTECNIA, 2022, 74 (04) : 649 - 661
  • [3] Characterizing regional soil mineral composition using spectroscopy and geostatistics
    Mulder, V. L.
    de Bruin, S.
    Weyermann, J.
    Kokaly, R. F.
    Schaepman, M. E.
    REMOTE SENSING OF ENVIRONMENT, 2013, 139 : 415 - 429
  • [4] Composition and Structure of the Mineral and Combustion Residues of High-Ash Coal
    Popov, V. K.
    Butakova, V. I.
    Possokhov, Yu. M.
    Snigireva, D. S.
    Zaostrovsky, A. N.
    COKE AND CHEMISTRY, 2016, 59 (03) : 82 - 86
  • [5] Mineral Composition and Graphitization Structure Characteristics of Contact Thermally Altered Coal
    Luo, Huogen
    Liang, Wenxu
    Wei, Chao
    Wu, Dun
    Gao, Xia
    Hu, Guangqing
    MOLECULES, 2022, 27 (12):
  • [6] Fluorescence spectra of cultured normal and malignant lung cells
    Atif, M.
    AlSalhi, M. S.
    AlObiadi, A. A.
    Aldwayyan, A. S.
    LASER PHYSICS, 2012, 22 (08) : 1353 - 1357
  • [7] Investigating the Mineral Composition of Peat by Combining FTIR-ATR and Multivariate Analysis
    Martinez Cortizas, Antonio
    Lopez-Merino, Lourdes
    Silva-Sanchez, Noemi
    Sjoestroem, Jenny K.
    Kylander, Malin E.
    MINERALS, 2021, 11 (10)
  • [8] The in vivo role of DMP-1 and serum phosphate on bone mineral composition
    Maginot, Megen
    Lin, Shuxian
    Liu, Ying
    Yuan, Baozhi
    Feng, Jian Q.
    Aswath, Pranesh B.
    BONE, 2015, 81 : 602 - 613
  • [9] Accelerated differentiation of neural stem cells into neurons on ginseng-reduced graphene oxide sheets
    Akhavan, Omid
    Ghaderi, Elham
    Abouei, Elham
    Hatamie, Shadie
    Ghasemi, Effat
    CARBON, 2014, 66 : 395 - 406
  • [10] Mineral stress affects the cell wall composition of grapevine (Vitis vinifera L.)
    Fernandes, Joao C.
    Garcia-Angulo, Penelope
    Goulao, Luis F.
    Acebes, Jose L.
    Amancio, Sara
    PLANT SCIENCE, 2013, 205 : 111 - 120