A link density clustering algorithm based on automatically selecting density peaks for overlapping community detection

被引:20
作者
Huang, Lan [1 ,2 ]
Wang, Guishen [1 ,2 ]
Wang, Yan [1 ,2 ]
Pang, Wei [3 ]
Ma, Qin [4 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Jilin, Peoples R China
[2] Jilin Univ, Minist Educ, Key Lab Symbol Computat & Knowledge Engn, Changchun 130012, Jilin, Peoples R China
[3] Univ Aberdeen, Sch Nat & Comp Sci, Aberdeen AB24 3UE, Scotland
[4] BioSNTR, Brookings, SD USA
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2016年 / 30卷 / 24期
基金
中国国家自然科学基金;
关键词
Link community; overlapping community detection; link distance metric; box plot; complex network; NETWORK;
D O I
10.1142/S0217979216501678
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we proposed a link density clustering (LDC) method for overlapping community detection based on density peaks. We firstly use an extended cosine link distance metric to reflect the relationship of links. Then we introduce a clustering algorithm with fast search for solving the link clustering (LC) problem by density peaks with box plot strategy to determine the cluster centers automatically. Finally, we acquire both the link communities and the node communities. Our algorithm is compared with other representative algorithms through substantial experiments on real-world networks. The experimental results show that our algorithm consistently outperforms other algorithms in terms of modularity and coverage.
引用
收藏
页数:15
相关论文
共 41 条
  • [1] Link communities reveal multiscale complexity in networks
    Ahn, Yong-Yeol
    Bagrow, James P.
    Lehmann, Sune
    [J]. NATURE, 2010, 466 (7307) : 761 - U11
  • [2] Anderberg M. R., 2014, Cluster analysis for applications: Probability and mathematical statistics: A series of monographs and textbooks
  • [3] [Anonymous], 2012, Synthesis Lectures on Data Mining and Knowledge Discovery
  • [4] Cazabet Remy, 2010, Proceedings of the 2010 IEEE Second International Conference on Social Computing (SocialCom 2010). the Second IEEE International Conference on Privacy, Security, Risk and Trust (PASSAT 2010), P309, DOI 10.1109/SocialCom.2010.51
  • [5] Cazabet R., 2016, ILCD SHORT PRESENTAT
  • [6] Ester M, 1996, P 2 INT C KNOWLEDGE, DOI DOI 10.5555/3001460.3001507
  • [7] Weighted network modules
    Farkas, Illes J.
    Abel, Daniel
    Palla, Gergely
    Vicsek, Tamas
    [J]. NEW JOURNAL OF PHYSICS, 2007, 9
  • [8] Community detection in graphs
    Fortunato, Santo
    [J]. PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2010, 486 (3-5): : 75 - 174
  • [9] A FAST ESTIMATION ALGORITHM OF COMMUNITY NUMBER IN LARGE SCALE-FREE COMPLEX NETWORKS
    Fu, Peihua
    Zhu, Shan'An
    Zhu, Anding
    Dong, Xiao
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2014, 28 (04):
  • [10] Proteome survey reveals modularity of the yeast cell machinery
    Gavin, AC
    Aloy, P
    Grandi, P
    Krause, R
    Boesche, M
    Marzioch, M
    Rau, C
    Jensen, LJ
    Bastuck, S
    Dümpelfeld, B
    Edelmann, A
    Heurtier, MA
    Hoffman, V
    Hoefert, C
    Klein, K
    Hudak, M
    Michon, AM
    Schelder, M
    Schirle, M
    Remor, M
    Rudi, T
    Hooper, S
    Bauer, A
    Bouwmeester, T
    Casari, G
    Drewes, G
    Neubauer, G
    Rick, JM
    Kuster, B
    Bork, P
    Russell, RB
    Superti-Furga, G
    [J]. NATURE, 2006, 440 (7084) : 631 - 636