An Explicit Manin-Dem'janenko Theorem in Elliptic Curves

被引:3
作者
Viada, Evelina [1 ]
机构
[1] Georg August Univ, Math Inst, Bunsenstr 3-5, D-37073 Gottingen, Germany
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2018年 / 70卷 / 05期
关键词
height; elliptic curve; explicit Mordell conjecture; explicit Manin-Demjanenko theorem; rational points on a curve; TORSION ANOMALOUS CONJECTURE; ALGEBRAIC SUBGROUPS; RATIONAL-POINTS; ABELIAN-VARIETIES; SUBVARIETIES; NUMBER;
D O I
10.4153/CJM-2017-045-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let e be a curve of genus at least 2 embedded in E-1 x . . . x E-N, where the E-i are elliptic curves for i = 1, . . . , N. In this article we give an explicit sharp bound for the Neron-Tate height of the points of C contained in the union of all algebraic subgroups of dimension < max(r(e) - t(e) , t(e)), where to (resp. r(e)) is the minimal dimension of a translate (resp. of a torsion variety) containing e. As a corollary, we give an explicit bound for the height of the rational points of special curves, proving new cases of the explicit Mordell Conjecture and in particular making explicit (and slightly more general in the CM case) the Manin-Dem'janenko method for curves in products of elliptic curves.
引用
收藏
页码:1173 / 1200
页数:28
相关论文
共 32 条
[21]  
Neukirch Jurgen, 1999, ALGEBRAIC NUMBER THE, V322, DOI [10.1007/978-3-662-03983-0, DOI 10.1007/978-3-662-03983-0]
[22]   ALTERNATIVE HEIGHTS .1. [J].
PHILIPPON, P .
MATHEMATISCHE ANNALEN, 1991, 289 (02) :255-283
[23]  
PHILIPPON P, 1995, J MATH PURE APPL, V74, P345
[24]  
Serre J-P., 1989, Aspects of Mathematics
[25]  
SILVERMAN JH, 1990, MATH COMPUT, V55, P723, DOI 10.1090/S0025-5718-1990-1035944-5
[26]  
Stoll M, 2011, J THEOR NOMBR BORDX, V23, P257
[27]  
Viada E, 2003, ANN SCUOLA NORM-SCI, V2, P47
[28]  
Viada E, 2016, RIV MAT UNIV PARMA, V7, P101
[29]   The intersection of a curve with a union of translated codimension-two subgroups in a power of an elliptic curve [J].
Viada, Evelina .
ALGEBRA & NUMBER THEORY, 2008, 2 (03) :249-298
[30]  
Winckler B., 2017, PROBLEME LEHMER COUR