An Explicit Manin-Dem'janenko Theorem in Elliptic Curves

被引:3
|
作者
Viada, Evelina [1 ]
机构
[1] Georg August Univ, Math Inst, Bunsenstr 3-5, D-37073 Gottingen, Germany
来源
CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES | 2018年 / 70卷 / 05期
关键词
height; elliptic curve; explicit Mordell conjecture; explicit Manin-Demjanenko theorem; rational points on a curve; TORSION ANOMALOUS CONJECTURE; ALGEBRAIC SUBGROUPS; RATIONAL-POINTS; ABELIAN-VARIETIES; SUBVARIETIES; NUMBER;
D O I
10.4153/CJM-2017-045-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let e be a curve of genus at least 2 embedded in E-1 x . . . x E-N, where the E-i are elliptic curves for i = 1, . . . , N. In this article we give an explicit sharp bound for the Neron-Tate height of the points of C contained in the union of all algebraic subgroups of dimension < max(r(e) - t(e) , t(e)), where to (resp. r(e)) is the minimal dimension of a translate (resp. of a torsion variety) containing e. As a corollary, we give an explicit bound for the height of the rational points of special curves, proving new cases of the explicit Mordell Conjecture and in particular making explicit (and slightly more general in the CM case) the Manin-Dem'janenko method for curves in products of elliptic curves.
引用
收藏
页码:1173 / 1200
页数:28
相关论文
共 23 条