A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling

被引:156
|
作者
Leger, Stefan [1 ,2 ,3 ,4 ]
Zwanenburg, Alex [1 ,2 ,3 ,4 ,10 ]
Pilz, Karoline [1 ,2 ,3 ,4 ,10 ,11 ,12 ]
Lohaus, Fabian [1 ,2 ,3 ,4 ,10 ,11 ,12 ]
Linge, Annett [1 ,2 ,3 ,4 ,10 ,11 ,12 ]
Zoephel, Klaus [12 ,14 ,15 ]
Kotzerke, Joerg [12 ,14 ,15 ]
Schreiber, Andreas [16 ]
Tinhofer, Inge [3 ,5 ,17 ]
Budach, Volker [3 ,5 ,17 ]
Sak, Ali [4 ,6 ,18 ]
Stuschke, Martin [4 ,6 ,18 ]
Balermpas, Panagiotis [3 ,7 ,19 ]
Roedel, Claus [3 ,7 ,19 ]
Ganswindt, Ute [20 ,21 ,22 ]
Belka, Claus [3 ,8 ,20 ,21 ,22 ]
Pigorsch, Steffi [3 ,8 ,23 ]
Combs, Stephanie E. [3 ,8 ,23 ,24 ]
Moennich, David [3 ,9 ,25 ,26 ]
Zips, Daniel [3 ,9 ,25 ,26 ]
Krause, Mechthild [1 ,2 ,3 ,4 ,10 ,11 ,12 ,13 ]
Baumann, Michael [1 ,2 ,3 ,4 ,10 ,11 ,12 ,13 ]
Troost, Esther G. C. [1 ,2 ,3 ,4 ,10 ,11 ,12 ,13 ]
Loeck, Steffen [1 ,2 ,3 ,4 ,11 ,12 ]
Richter, Christian [1 ,2 ,3 ,4 ,11 ,12 ,13 ]
机构
[1] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, OncoRay Natl Ctr Radiat Res Oncol, Fac Med, Dresden, Germany
[2] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, Univ Hosp Carl Gustav Carus, Dresden, Germany
[3] German Canc Res Ctr, Heidelberg, Germany
[4] German Canc Consortium DKTK, Partner Site Dresden, Dresden, Germany
[5] German Canc Consortium DKTK, Partner Site Berlin, Berlin, Germany
[6] German Canc Consortium DKTK, Partner Site Essen, Essen, Germany
[7] German Canc Consortium DKTK, Partner Site Frankfurt, Frankfurt, Germany
[8] German Canc Consortium DKTK, Partner Site Munich, Munich, Germany
[9] German Canc Consortium DKTK, Partner Site Tubingen, Tubingen, Germany
[10] Natl Ctr Tumor Dis NCT, Partner Site Dresden, Dresden, Germany
[11] Tech Univ Dresden, Fac Med, Dept Radiotherapy & Radiat Oncol, Dresden, Germany
[12] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[13] Helmholtz Zentrum Dresden Rossendorf, Inst Radiooncol OncoRay, Dresden, Germany
[14] Tech Univ Dresden, Fac Med, Dept Nucl Med, Dresden, Germany
[15] Helmholtz Zentrum Dresden Rossendorf, PET Ctr, Inst Radiopharmaceut Canc Res, Dresden, Germany
[16] Tech Univ Dresden, Teaching Hosp Dresden Friedrichstadt, Clin Radiat Oncol, Dresden, Germany
[17] Charite, Dept Radiooncol & Radiotherapy, Berlin, Germany
[18] Univ Duisburg Essen, Med Fac, Dept Radiotherapy, Essen, Germany
[19] Goethe Univ Frankfurt, Dept Radiotherapy & Oncol, Frankfurt, Germany
[20] Heidelberg Univ, Med Sch, Dept Radiat Oncol, Heidelberg Ion Therapy Ctr HIT, Heidelberg, Germany
[21] Ludwig Maximilians Univ Munchen, Dept Radiat Oncol, Munich, Germany
[22] Helmholtz Zentrum, Clin Cooperat Grp, Personalized Radiotherapy Head & Neck Canc, Munich, Germany
[23] Tech Univ Munich, Dept Radiat Oncol, Munich, Germany
[24] Helmholtz Zentrum Munchen, Inst Innovat Radiotherapy iRT, Oberschleissheim, Germany
[25] Eberhard Karls Univ Tubingen, Fac Med, Dept Radiat Oncol, Tubingen, Germany
[26] Eberhard Karls Univ Tubingen, Univ Hosp Tubingen, Tubingen, Germany
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
COOCCURRENCE TEXTURE STATISTICS; FEATURES; RADIOCHEMOTHERAPY; MARKER; PET;
D O I
10.1038/s41598-017-13448-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g., MSR-RF: C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Survival neural networks for time-to-event prediction in longitudinal study
    Zhang, Jianfei
    Chen, Lifei
    Ye, Yanfang
    Guo, Gongde
    Chen, Rongbo
    Vanasse, Alain
    Wang, Shengrui
    KNOWLEDGE AND INFORMATION SYSTEMS, 2020, 62 (09) : 3727 - 3751
  • [42] DRTOP: deep learning-based radiomics for the time-to-event outcome prediction in lung cancer
    Afshar, Parnian
    Mohammadi, Arash
    Tyrrell, Pascal N.
    Cheung, Patrick
    Sigiuk, Ahmed
    Plataniotis, Konstantinos N.
    Nguyen, Elsie T.
    Oikonomou, Anastasia
    SCIENTIFIC REPORTS, 2020, 10 (01):
  • [43] Interval mapping methods for detecting QTL affecting survival and time-to-event phenotypes
    Moreno, CR
    Elsen, JM
    Le Roy, P
    Ducrocq, V
    GENETICS RESEARCH, 2005, 85 (02) : 139 - 149
  • [44] Using Restricted Mean Survival Time to Improve Interpretability of Time-to-Event Data Analysis
    Charu, Vivek
    Tian, Lu
    Tamura, Manjula Kurella
    Montez-Rath, Maria E.
    CLINICAL JOURNAL OF THE AMERICAN SOCIETY OF NEPHROLOGY, 2024, 19 (02): : 260 - 262
  • [45] Time-to-event overall survival prediction in glioblastoma multiforme patients using magnetic resonance imaging radiomics
    Hajianfar, Ghasem
    Avval, Atlas Haddadi
    Hosseini, Seyyed Ali
    Nazari, Mostafa
    Oveisi, Mehrdad
    Shiri, Isaac
    Zaidi, Habib
    RADIOLOGIA MEDICA, 2023, 128 (12): : 1521 - 1534
  • [46] Time-to-event overall survival prediction in glioblastoma multiforme patients using magnetic resonance imaging radiomics
    Ghasem Hajianfar
    Atlas Haddadi Avval
    Seyyed Ali Hosseini
    Mostafa Nazari
    Mehrdad Oveisi
    Isaac Shiri
    Habib Zaidi
    La radiologia medica, 2023, 128 : 1521 - 1534
  • [47] Copula-based Cox Regression to Modelling Bivariate Time-to-Event Data
    Mahara, Duhania O.
    Purnami, Santi W.
    Andari, Shofi
    2024 16TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING, ICMLC 2024, 2024, : 658 - 664
  • [48] Assessing slow-learning in MS with time-to-event data approach
    Luneau, C.
    Degraeve, B.
    Hautecoeur, P.
    Lenne, Bruno
    MULTIPLE SCLEROSIS JOURNAL, 2019, 25 (08) : NP15 - NP15
  • [49] SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event Data
    Curth, Alicia
    Lee, Changhee
    van der Schaar, Mihaela
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021,
  • [50] Using median survival in meta-analysis of experimental time-to-event data
    Hirst, Theodore C.
    Sena, Emily S.
    Macleod, Malcolm R.
    SYSTEMATIC REVIEWS, 2021, 10 (01)