A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling

被引:156
|
作者
Leger, Stefan [1 ,2 ,3 ,4 ]
Zwanenburg, Alex [1 ,2 ,3 ,4 ,10 ]
Pilz, Karoline [1 ,2 ,3 ,4 ,10 ,11 ,12 ]
Lohaus, Fabian [1 ,2 ,3 ,4 ,10 ,11 ,12 ]
Linge, Annett [1 ,2 ,3 ,4 ,10 ,11 ,12 ]
Zoephel, Klaus [12 ,14 ,15 ]
Kotzerke, Joerg [12 ,14 ,15 ]
Schreiber, Andreas [16 ]
Tinhofer, Inge [3 ,5 ,17 ]
Budach, Volker [3 ,5 ,17 ]
Sak, Ali [4 ,6 ,18 ]
Stuschke, Martin [4 ,6 ,18 ]
Balermpas, Panagiotis [3 ,7 ,19 ]
Roedel, Claus [3 ,7 ,19 ]
Ganswindt, Ute [20 ,21 ,22 ]
Belka, Claus [3 ,8 ,20 ,21 ,22 ]
Pigorsch, Steffi [3 ,8 ,23 ]
Combs, Stephanie E. [3 ,8 ,23 ,24 ]
Moennich, David [3 ,9 ,25 ,26 ]
Zips, Daniel [3 ,9 ,25 ,26 ]
Krause, Mechthild [1 ,2 ,3 ,4 ,10 ,11 ,12 ,13 ]
Baumann, Michael [1 ,2 ,3 ,4 ,10 ,11 ,12 ,13 ]
Troost, Esther G. C. [1 ,2 ,3 ,4 ,10 ,11 ,12 ,13 ]
Loeck, Steffen [1 ,2 ,3 ,4 ,11 ,12 ]
Richter, Christian [1 ,2 ,3 ,4 ,11 ,12 ,13 ]
机构
[1] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, OncoRay Natl Ctr Radiat Res Oncol, Fac Med, Dresden, Germany
[2] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, Univ Hosp Carl Gustav Carus, Dresden, Germany
[3] German Canc Res Ctr, Heidelberg, Germany
[4] German Canc Consortium DKTK, Partner Site Dresden, Dresden, Germany
[5] German Canc Consortium DKTK, Partner Site Berlin, Berlin, Germany
[6] German Canc Consortium DKTK, Partner Site Essen, Essen, Germany
[7] German Canc Consortium DKTK, Partner Site Frankfurt, Frankfurt, Germany
[8] German Canc Consortium DKTK, Partner Site Munich, Munich, Germany
[9] German Canc Consortium DKTK, Partner Site Tubingen, Tubingen, Germany
[10] Natl Ctr Tumor Dis NCT, Partner Site Dresden, Dresden, Germany
[11] Tech Univ Dresden, Fac Med, Dept Radiotherapy & Radiat Oncol, Dresden, Germany
[12] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[13] Helmholtz Zentrum Dresden Rossendorf, Inst Radiooncol OncoRay, Dresden, Germany
[14] Tech Univ Dresden, Fac Med, Dept Nucl Med, Dresden, Germany
[15] Helmholtz Zentrum Dresden Rossendorf, PET Ctr, Inst Radiopharmaceut Canc Res, Dresden, Germany
[16] Tech Univ Dresden, Teaching Hosp Dresden Friedrichstadt, Clin Radiat Oncol, Dresden, Germany
[17] Charite, Dept Radiooncol & Radiotherapy, Berlin, Germany
[18] Univ Duisburg Essen, Med Fac, Dept Radiotherapy, Essen, Germany
[19] Goethe Univ Frankfurt, Dept Radiotherapy & Oncol, Frankfurt, Germany
[20] Heidelberg Univ, Med Sch, Dept Radiat Oncol, Heidelberg Ion Therapy Ctr HIT, Heidelberg, Germany
[21] Ludwig Maximilians Univ Munchen, Dept Radiat Oncol, Munich, Germany
[22] Helmholtz Zentrum, Clin Cooperat Grp, Personalized Radiotherapy Head & Neck Canc, Munich, Germany
[23] Tech Univ Munich, Dept Radiat Oncol, Munich, Germany
[24] Helmholtz Zentrum Munchen, Inst Innovat Radiotherapy iRT, Oberschleissheim, Germany
[25] Eberhard Karls Univ Tubingen, Fac Med, Dept Radiat Oncol, Tubingen, Germany
[26] Eberhard Karls Univ Tubingen, Univ Hosp Tubingen, Tubingen, Germany
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
COOCCURRENCE TEXTURE STATISTICS; FEATURES; RADIOCHEMOTHERAPY; MARKER; PET;
D O I
10.1038/s41598-017-13448-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g., MSR-RF: C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Flexible modelling of simultaneously interval censored and truncated time-to-event data
    Chebon, Sammy
    Faes, Christel
    De Smedt, Ann
    Geys, Helena
    PHARMACEUTICAL STATISTICS, 2015, 14 (04) : 311 - 321
  • [32] Comparation of Machine Learning Methods for NSCLC Overall Survival Time Prediction Based On Radiomics Analysis
    Sun, W.
    Jiang, M.
    Dang, J.
    Yin, F.
    MEDICAL PHYSICS, 2018, 45 (06) : E233 - E233
  • [33] Effect of machine learning methods on predicting NSCLC overall survival time based on Radiomics analysis
    Sun, Wenzheng
    Jiang, Mingyan
    Dang, Jun
    Chang, Panchun
    Yin, Fang-Fang
    RADIATION ONCOLOGY, 2018, 13
  • [34] Time-to-event machine learning prediction of metastatic recurrence of localized melanoma
    Wan, G.
    Leung, B.
    DeSimone, M.
    Nguyen, N.
    Rajeh, A.
    Collier, M.
    Rashdan, H.
    Roster, K.
    Asgari, M.
    Gusev, A.
    Stagner, A.
    Lian, C.
    Hurlbert, M.
    Yu, K.
    Tsao, H.
    Liu, F.
    Sorger, P.
    Semenov, Y.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2023, 143 (05) : S37 - S37
  • [35] Effect of machine learning methods on predicting NSCLC overall survival time based on Radiomics analysis
    Wenzheng Sun
    Mingyan Jiang
    Jun Dang
    Panchun Chang
    Fang-Fang Yin
    Radiation Oncology, 13
  • [36] Survival neural networks for time-to-event prediction in longitudinal study
    Jianfei Zhang
    Lifei Chen
    Yanfang Ye
    Gongde Guo
    Rongbo Chen
    Alain Vanasse
    Shengrui Wang
    Knowledge and Information Systems, 2020, 62 : 3727 - 3751
  • [37] Time-to-event modelling of effect of codrituzumab on overall survival in patients with hepatocellular carcinoma
    Nakamura, Mikiko
    Xu, Chao
    Diack, Cheikh
    Ohishi, Norihisa
    Lee, Ruey-min
    Iida, Satofumi
    Kawanishi, Takehiko
    Ohtomo, Toshihiko
    Abou-Alfa, Ghassan K.
    Chen, Ya-Chi
    BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2018, 84 (05) : 944 - 951
  • [38] Survival analysis of time-to-event data in respiratory health research studies
    Kasza, Jessica
    Wraith, Darren
    Lamb, Karen
    Wolfe, Rory
    RESPIROLOGY, 2014, 19 (04) : 483 - 492
  • [39] Bayesian Approach for Joint Longitudinal and Time-to-Event Data with Survival Fraction
    Abu Bakar, Mohd Rizam
    Salah, Khalid A.
    Ibrahim, Noor Akma
    Haron, Kassim
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2009, 32 (01) : 75 - 100
  • [40] Modeling time-to-event (survival) data using classification tree analysis
    Linden, Ariel
    Yarnold, Paul R.
    JOURNAL OF EVALUATION IN CLINICAL PRACTICE, 2017, 23 (06) : 1299 - 1308