A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling

被引:157
作者
Leger, Stefan [1 ,2 ,3 ,4 ]
Zwanenburg, Alex [1 ,2 ,3 ,4 ,10 ]
Pilz, Karoline [1 ,2 ,3 ,4 ,10 ,11 ,12 ]
Lohaus, Fabian [1 ,2 ,3 ,4 ,10 ,11 ,12 ]
Linge, Annett [1 ,2 ,3 ,4 ,10 ,11 ,12 ]
Zoephel, Klaus [12 ,14 ,15 ]
Kotzerke, Joerg [12 ,14 ,15 ]
Schreiber, Andreas [16 ]
Tinhofer, Inge [3 ,5 ,17 ]
Budach, Volker [3 ,5 ,17 ]
Sak, Ali [4 ,6 ,18 ]
Stuschke, Martin [4 ,6 ,18 ]
Balermpas, Panagiotis [3 ,7 ,19 ]
Roedel, Claus [3 ,7 ,19 ]
Ganswindt, Ute [20 ,21 ,22 ]
Belka, Claus [3 ,8 ,20 ,21 ,22 ]
Pigorsch, Steffi [3 ,8 ,23 ]
Combs, Stephanie E. [3 ,8 ,23 ,24 ]
Moennich, David [3 ,9 ,25 ,26 ]
Zips, Daniel [3 ,9 ,25 ,26 ]
Krause, Mechthild [1 ,2 ,3 ,4 ,10 ,11 ,12 ,13 ]
Baumann, Michael [1 ,2 ,3 ,4 ,10 ,11 ,12 ,13 ]
Troost, Esther G. C. [1 ,2 ,3 ,4 ,10 ,11 ,12 ,13 ]
Loeck, Steffen [1 ,2 ,3 ,4 ,11 ,12 ]
Richter, Christian [1 ,2 ,3 ,4 ,11 ,12 ,13 ]
机构
[1] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, OncoRay Natl Ctr Radiat Res Oncol, Fac Med, Dresden, Germany
[2] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, Univ Hosp Carl Gustav Carus, Dresden, Germany
[3] German Canc Res Ctr, Heidelberg, Germany
[4] German Canc Consortium DKTK, Partner Site Dresden, Dresden, Germany
[5] German Canc Consortium DKTK, Partner Site Berlin, Berlin, Germany
[6] German Canc Consortium DKTK, Partner Site Essen, Essen, Germany
[7] German Canc Consortium DKTK, Partner Site Frankfurt, Frankfurt, Germany
[8] German Canc Consortium DKTK, Partner Site Munich, Munich, Germany
[9] German Canc Consortium DKTK, Partner Site Tubingen, Tubingen, Germany
[10] Natl Ctr Tumor Dis NCT, Partner Site Dresden, Dresden, Germany
[11] Tech Univ Dresden, Fac Med, Dept Radiotherapy & Radiat Oncol, Dresden, Germany
[12] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[13] Helmholtz Zentrum Dresden Rossendorf, Inst Radiooncol OncoRay, Dresden, Germany
[14] Tech Univ Dresden, Fac Med, Dept Nucl Med, Dresden, Germany
[15] Helmholtz Zentrum Dresden Rossendorf, PET Ctr, Inst Radiopharmaceut Canc Res, Dresden, Germany
[16] Tech Univ Dresden, Teaching Hosp Dresden Friedrichstadt, Clin Radiat Oncol, Dresden, Germany
[17] Charite, Dept Radiooncol & Radiotherapy, Berlin, Germany
[18] Univ Duisburg Essen, Med Fac, Dept Radiotherapy, Essen, Germany
[19] Goethe Univ Frankfurt, Dept Radiotherapy & Oncol, Frankfurt, Germany
[20] Heidelberg Univ, Med Sch, Dept Radiat Oncol, Heidelberg Ion Therapy Ctr HIT, Heidelberg, Germany
[21] Ludwig Maximilians Univ Munchen, Dept Radiat Oncol, Munich, Germany
[22] Helmholtz Zentrum, Clin Cooperat Grp, Personalized Radiotherapy Head & Neck Canc, Munich, Germany
[23] Tech Univ Munich, Dept Radiat Oncol, Munich, Germany
[24] Helmholtz Zentrum Munchen, Inst Innovat Radiotherapy iRT, Oberschleissheim, Germany
[25] Eberhard Karls Univ Tubingen, Fac Med, Dept Radiat Oncol, Tubingen, Germany
[26] Eberhard Karls Univ Tubingen, Univ Hosp Tubingen, Tubingen, Germany
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
COOCCURRENCE TEXTURE STATISTICS; FEATURES; RADIOCHEMOTHERAPY; MARKER; PET;
D O I
10.1038/s41598-017-13448-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g., MSR-RF: C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints.
引用
收藏
页数:11
相关论文
共 44 条
  • [41] Applications and limitations of radiomics
    Yip, Stephen S. F.
    Aerts, Hugo J. W. L.
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (13) : R150 - R166
  • [42] Reproducibility of radiomics for deciphering tumor phenotype with imaging
    Zhao, Binsheng
    Tan, Yongqiang
    Tsai, Wei-Yann
    Qi, Jing
    Xie, Chuanmiao
    Lu, Lin
    Schwartz, Lawrence H.
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [43] Exploratory prospective trial of hypoxia-specific PET imaging during radiochemotherapy in patients with locally advanced head-and-neck cancer
    Zips, Daniel
    Zoephel, Klaus
    Abolmaali, Nasreddin
    Perrin, Rosalind
    Abramyuk, Andrij
    Haase, Robert
    Appold, Steffen
    Steinbach, Joerg
    Kotzerke, Joerg
    Baumann, Michael
    [J]. RADIOTHERAPY AND ONCOLOGY, 2012, 105 (01) : 21 - 28
  • [44] Zwanenburg A., 2016, ARXIV161207003CS, DOI [10 . 1148 / radiol.2020191145. eprint, DOI 10.1148/RADIOL.2020191145.EPRINT]