A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling

被引:157
作者
Leger, Stefan [1 ,2 ,3 ,4 ]
Zwanenburg, Alex [1 ,2 ,3 ,4 ,10 ]
Pilz, Karoline [1 ,2 ,3 ,4 ,10 ,11 ,12 ]
Lohaus, Fabian [1 ,2 ,3 ,4 ,10 ,11 ,12 ]
Linge, Annett [1 ,2 ,3 ,4 ,10 ,11 ,12 ]
Zoephel, Klaus [12 ,14 ,15 ]
Kotzerke, Joerg [12 ,14 ,15 ]
Schreiber, Andreas [16 ]
Tinhofer, Inge [3 ,5 ,17 ]
Budach, Volker [3 ,5 ,17 ]
Sak, Ali [4 ,6 ,18 ]
Stuschke, Martin [4 ,6 ,18 ]
Balermpas, Panagiotis [3 ,7 ,19 ]
Roedel, Claus [3 ,7 ,19 ]
Ganswindt, Ute [20 ,21 ,22 ]
Belka, Claus [3 ,8 ,20 ,21 ,22 ]
Pigorsch, Steffi [3 ,8 ,23 ]
Combs, Stephanie E. [3 ,8 ,23 ,24 ]
Moennich, David [3 ,9 ,25 ,26 ]
Zips, Daniel [3 ,9 ,25 ,26 ]
Krause, Mechthild [1 ,2 ,3 ,4 ,10 ,11 ,12 ,13 ]
Baumann, Michael [1 ,2 ,3 ,4 ,10 ,11 ,12 ,13 ]
Troost, Esther G. C. [1 ,2 ,3 ,4 ,10 ,11 ,12 ,13 ]
Loeck, Steffen [1 ,2 ,3 ,4 ,11 ,12 ]
Richter, Christian [1 ,2 ,3 ,4 ,11 ,12 ,13 ]
机构
[1] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, OncoRay Natl Ctr Radiat Res Oncol, Fac Med, Dresden, Germany
[2] Tech Univ Dresden, Helmholtz Zentrum Dresden Rossendorf, Univ Hosp Carl Gustav Carus, Dresden, Germany
[3] German Canc Res Ctr, Heidelberg, Germany
[4] German Canc Consortium DKTK, Partner Site Dresden, Dresden, Germany
[5] German Canc Consortium DKTK, Partner Site Berlin, Berlin, Germany
[6] German Canc Consortium DKTK, Partner Site Essen, Essen, Germany
[7] German Canc Consortium DKTK, Partner Site Frankfurt, Frankfurt, Germany
[8] German Canc Consortium DKTK, Partner Site Munich, Munich, Germany
[9] German Canc Consortium DKTK, Partner Site Tubingen, Tubingen, Germany
[10] Natl Ctr Tumor Dis NCT, Partner Site Dresden, Dresden, Germany
[11] Tech Univ Dresden, Fac Med, Dept Radiotherapy & Radiat Oncol, Dresden, Germany
[12] Tech Univ Dresden, Univ Hosp Carl Gustav Carus, Dresden, Germany
[13] Helmholtz Zentrum Dresden Rossendorf, Inst Radiooncol OncoRay, Dresden, Germany
[14] Tech Univ Dresden, Fac Med, Dept Nucl Med, Dresden, Germany
[15] Helmholtz Zentrum Dresden Rossendorf, PET Ctr, Inst Radiopharmaceut Canc Res, Dresden, Germany
[16] Tech Univ Dresden, Teaching Hosp Dresden Friedrichstadt, Clin Radiat Oncol, Dresden, Germany
[17] Charite, Dept Radiooncol & Radiotherapy, Berlin, Germany
[18] Univ Duisburg Essen, Med Fac, Dept Radiotherapy, Essen, Germany
[19] Goethe Univ Frankfurt, Dept Radiotherapy & Oncol, Frankfurt, Germany
[20] Heidelberg Univ, Med Sch, Dept Radiat Oncol, Heidelberg Ion Therapy Ctr HIT, Heidelberg, Germany
[21] Ludwig Maximilians Univ Munchen, Dept Radiat Oncol, Munich, Germany
[22] Helmholtz Zentrum, Clin Cooperat Grp, Personalized Radiotherapy Head & Neck Canc, Munich, Germany
[23] Tech Univ Munich, Dept Radiat Oncol, Munich, Germany
[24] Helmholtz Zentrum Munchen, Inst Innovat Radiotherapy iRT, Oberschleissheim, Germany
[25] Eberhard Karls Univ Tubingen, Fac Med, Dept Radiat Oncol, Tubingen, Germany
[26] Eberhard Karls Univ Tubingen, Univ Hosp Tubingen, Tubingen, Germany
来源
SCIENTIFIC REPORTS | 2017年 / 7卷
关键词
COOCCURRENCE TEXTURE STATISTICS; FEATURES; RADIOCHEMOTHERAPY; MARKER; PET;
D O I
10.1038/s41598-017-13448-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Radiomics applies machine learning algorithms to quantitative imaging data to characterise the tumour phenotype and predict clinical outcome. For the development of radiomics risk models, a variety of different algorithms is available and it is not clear which one gives optimal results. Therefore, we assessed the performance of 11 machine learning algorithms combined with 12 feature selection methods by the concordance index (C-Index), to predict loco-regional tumour control (LRC) and overall survival for patients with head and neck squamous cell carcinoma. The considered algorithms are able to deal with continuous time-to-event survival data. Feature selection and model building were performed on a multicentre cohort (213 patients) and validated using an independent cohort (80 patients). We found several combinations of machine learning algorithms and feature selection methods which achieve similar results, e.g., MSR-RF: C-Index = 0.71 and BT-COX: C-Index = 0.70 in combination with Spearman feature selection. Using the best performing models, patients were stratified into groups of low and high risk of recurrence. Significant differences in LRC were obtained between both groups on the validation cohort. Based on the presented analysis, we identified a subset of algorithms which should be considered in future radiomics studies to develop stable and clinically relevant predictive models for time-to-event endpoints.
引用
收藏
页数:11
相关论文
共 44 条
  • [1] Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach
    Aerts, Hugo J. W. L.
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Parmar, Chintan
    Grossmann, Patrick
    Cavalho, Sara
    Bussink, Johan
    Monshouwer, Rene
    Haibe-Kains, Benjamin
    Rietveld, Derek
    Hoebers, Frank
    Rietbergen, Michelle M.
    Leemans, C. Rene
    Dekker, Andre
    Quackenbush, John
    Gillies, Robert J.
    Lambin, Philippe
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [2] TEXTURAL FEATURES CORRESPONDING TO TEXTURAL PROPERTIES
    AMADASUN, M
    KING, R
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1989, 19 (05): : 1264 - 1274
  • [3] Radiation oncology in the era of precision medicine
    Baumann, Michael
    Krause, Mechthild
    Overgaard, Jens
    Debus, Juergen
    Bentzen, Soren M.
    Daartz, Juliane
    Richter, Christian
    Zips, Daniel
    Bortfeld, Thomas
    [J]. NATURE REVIEWS CANCER, 2016, 16 (04) : 234 - 249
  • [4] Bergstra J, 2012, J MACH LEARN RES, V13, P281
  • [5] Cancer H. L. M., 2016, EXPLORING DEEP FEATU, P235
  • [6] An analysis of co-occurrence texture statistics as a function of grey level quantization
    Clausi, DA
    [J]. CANADIAN JOURNAL OF REMOTE SENSING, 2002, 28 (01) : 45 - 62
  • [7] CT-based radiomic signature predicts distant metastasis in lung adenocarcinoma
    Coroller, Thibaud P.
    Grossmann, Patrick
    Hou, Ying
    Velazquez, Emmanuel Rios
    Leijenaar, Ralph T. H.
    Hermann, Gretchen
    Lambin, Philippe
    Haibe-Kains, Benjamin
    Mak, Raymond H.
    Aerts, Hugo J. W. L.
    [J]. RADIOTHERAPY AND ONCOLOGY, 2015, 114 (03) : 345 - 350
  • [8] IMAGE CHARACTERIZATIONS BASED ON JOINT GRAY LEVEL RUN LENGTH DISTRIBUTIONS
    DASARATHY, BV
    HOLDER, EB
    [J]. PATTERN RECOGNITION LETTERS, 1991, 12 (08) : 497 - 502
  • [9] Ensemble methods in machine learning
    Dietterich, TG
    [J]. MULTIPLE CLASSIFIER SYSTEMS, 2000, 1857 : 1 - 15
  • [10] Galloway M.M., 1975, COMPUTER GRAPHICS IM, V4, P172, DOI [10.1016/S0146-664X(75)80008-6, DOI 10.1016/S0146-664X(75)80008-6]