Multi-fidelity Co-Kriging surrogate model for ship hull form optimization

被引:62
|
作者
Liu, Xinwang [1 ,2 ]
Zhao, Weiwen [1 ]
Wan, Decheng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Naval Architecture Ocean & Civil Engn, Computat Marine Hydrodynam Lab CMHL, Shanghai 200240, Peoples R China
[2] Harbin Engn Univ, Coll Math Sci, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
Multi-fidelity; Hull form optimization; Co-Kriging surrogate model; Potential flow; Viscous flow; NEUMANN-MICHELL THEORY; UNCERTAINTY QUANTIFICATION; DESIGN; SIMULATION;
D O I
10.1016/j.oceaneng.2021.110239
中图分类号
U6 [水路运输]; P75 [海洋工程];
学科分类号
0814 ; 081505 ; 0824 ; 082401 ;
摘要
For the simulation-based hull form optimization design, there are many methods to evaluate the hydrodynamic performance of the hull form. Although the high fidelity of the surrogate model can be guaranteed by evaluating a large number of new sample hulls based on viscous flow theory, the computational cost can be too high. Therefore, in order to release the burden of calculation, based on the traditional single-fidelity Kriging surrogate model, the multi-fidelity Co-Kriging surrogate model gives attention to both high accuracy and efficiency by combining the accuracy advantage of high-fidelity sample evaluation with the efficiency advantage of lowfidelity sample evaluation. This paper first introduces the construction process of the multi-fidelity Co-Kriging surrogate model, and then uses a series of numerical examples to illustrate the advantages of the multi-fidelity Co-Kriging surrogate model compared with the single-fidelity Kriging surrogate model in terms of fidelity and efficiency. Finally, a hull form optimization design for total drag of DTMB-5415 hull at the design speed is given in detail, where the viscous flow theory and potential flow theory are used for the hydrodynamic evaluations of the hull forms to obtain the high- and low-fidelity results respectively. Results show that the multi-fidelity CoKriging surrogate model can be established for hull form hydrodynamic performance optimization, which is superior to the single-fidelity Kriging surrogate model in accuracy, and the optimal hull obtained by Co-Kriging surrogate model has a better resistance optimization effect.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] A NOVEL MULTI-FIDELITY SURROGATE FOR TURBOMACHINERY DESIGN OPTIMIZATION
    Wang, Qineng
    Song, Liming
    Guo, Zhendong
    Li, Jun
    Feng, Zhenping
    PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 13D, 2023,
  • [22] Some considerations regarding the use of multi-fidelity Kriging in the construction of surrogate models
    Toal, David J. J.
    STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2015, 51 (06) : 1223 - 1245
  • [23] Some considerations regarding the use of multi-fidelity Kriging in the construction of surrogate models
    David J. J. Toal
    Structural and Multidisciplinary Optimization, 2015, 51 : 1223 - 1245
  • [24] Co-kriging based multi-fidelity uncertainty quantification of beam vibration using coarse and fine finite element meshes
    Rohit, R. Julian
    Ganguli, Ranjan
    INTERNATIONAL JOURNAL FOR COMPUTATIONAL METHODS IN ENGINEERING SCIENCE & MECHANICS, 2021, 23 (02): : 147 - 168
  • [25] Real-time hybrid simulation with multi-fidelity Co-Kriging for global response prediction under structural uncertainties
    Chen, Cheng
    Yang, Yanlin
    Hou, Hetao
    Peng, Changle
    Xu, Weijie
    EARTHQUAKE ENGINEERING & STRUCTURAL DYNAMICS, 2022, 51 (11): : 2591 - 2609
  • [26] Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization
    Zhang, Xinshuai
    Xie, Fangfang
    Ji, Tingwei
    Zhu, Zaoxu
    Zheng, Yao
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 373
  • [27] Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization
    Zhang, Xinshuai
    Xie, Fangfang
    Ji, Tingwei
    Zhu, Zaoxu
    Zheng, Yao
    Computer Methods in Applied Mechanics and Engineering, 2021, 373
  • [28] Multi-Fidelity Surrogate-Based Parameter Estimation for a Sailing Yacht Hull
    de Baar, Jouke H. S.
    Roberts, Stephen G.
    21ST INTERNATIONAL CONGRESS ON MODELLING AND SIMULATION (MODSIM2015), 2015, : 105 - 111
  • [29] QUANTILE SIMULATION OPTIMIZATION WITH STOCHASTIC CO-KRIGING MODEL
    Wang, Songhao
    Ng, Szu Hui
    Haskell, William Benjamin
    2018 WINTER SIMULATION CONFERENCE (WSC), 2018, : 2119 - 2130
  • [30] A Multi-Fidelity Surrogate Optimization Method Based on Analytical Models
    Sendrea, Ricardo E.
    Zekios, Constantinos L.
    Georgakopoulos, Stavros, V
    2021 IEEE MTT-S INTERNATIONAL MICROWAVE SYMPOSIUM (IMS), 2021, : 70 - 73