A 500 MHz random cycle, 1.5 ns latency, SOI embedded DRAM macro featuring a three-transistor micro sense amplifier

被引:39
作者
Barth, John [1 ]
Reohr, William R. [2 ]
Parries, Paul [3 ]
Fredeman, Gregory [3 ]
Golz, John [3 ]
Schuster, Stanley E. [2 ]
Matick, Richard E. [2 ]
Hunter, Hillery [2 ]
Tanner, Charles C., III [1 ]
Harig, Joseph [1 ]
Kim, Hoki [3 ]
Khan, Babar A. [3 ]
Griesemer, John [3 ]
Havreluk, Robert P. [3 ]
Yanagisawa, Kenji [3 ]
Kirihata, Toshiaki [3 ]
Iyer, Subramanian S. [3 ]
机构
[1] IBM Burlington, Essex Jct, VT 05452 USA
[2] IBM Corp, Thomas J Watson Res Ctr, Yorktown Hts, NY 10598 USA
[3] IBM Corp, Fishkill, NY 12533 USA
关键词
DRAM chips; FET amplifiers; memory architecture; microprocessor chips; Silicon on Insulator;
D O I
10.1109/JSSC.2007.908006
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
As microprocessors enter the highly multi-core/multi-threaded era, higher density, lower latency embedded memory will be required to meet cache design needs. This paper describes a 500MHz random cycle Silicon on Insulator (SOI) embedded DRAM macro which features a three-transistor micro sense amplifier, realizing significant performance gains over traditional array design methods. To address the realities of process integration, we describe the features and issues associated with integrating this DRAM into SOI technology, including deep trench processing and floating body effects. After a brief description of the macro architecture, details are provided on the three-transistor micro sense amplifier scheme, which is key to achieving a high transfer ratio with minimal area overhead. The paper concludes with hardware results and a summary.
引用
收藏
页码:86 / 95
页数:10
相关论文
共 13 条
  • [1] A 500MHz multi-banked compilable DRAM macro with direct write and programmable pipelining
    Barth, J
    Anand, D
    Dreibelbis, J
    Fifield, J
    Gorman, K
    Nelms, M
    Pomichter, G
    Pontius, D
    [J]. 2004 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE, DIGEST OF TECHNICAL PAPERS, 2004, 47 : 204 - 205
  • [2] BARTH J, 2002, IEEE INT SOL STAT CI, P156
  • [3] Design and implementation of the POWER5™ microprocessor
    Clabes, J
    Friedrich, J
    Sweet, M
    DiLullo, J
    Chu, S
    Plass, D
    Dawson, J
    Muench, P
    Powell, L
    Floyd, M
    Sinharoy, B
    Lee, M
    Goulet, M
    Wagoner, J
    Schwartz, N
    Runyon, S
    Gorman, G
    Restle, P
    Kalla, R
    McGill, J
    Dodson, S
    [J]. 2004 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE, DIGEST OF TECHNICAL PAPERS, 2004, 47 : 56 - 57
  • [4] COHEN E, 2006, IEEE ISSCC, P333
  • [5] Embedded DRAM: Technology platform for the blue Gene/L chip
    Iyer, SS
    Barth, JE
    Parries, PC
    Norum, JP
    Rice, JP
    Logan, LR
    Hoyniak, D
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2005, 49 (2-3) : 333 - 350
  • [6] An 800MHz embedded DRAM with a concurrent refresh mode
    Kirihata, T
    Parries, P
    Hanson, D
    Kim, H
    Golz, J
    Fredeman, G
    Rajeevakumar, R
    Griesemer, J
    Robson, N
    Cestero, A
    Wordeman, M
    Iyer, S
    [J]. 2004 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE, DIGEST OF TECHNICAL PAPERS, 2004, 47 : 206 - 207
  • [7] Logic-based eDRAM: Origins and rationale for use
    Matick, RE
    Schuster, SE
    [J]. IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2005, 49 (01) : 145 - 165
  • [8] Naffziger S., 2005, 2005 IEEE International Solid-State Circuits Conference (IEEE Cat. No. 05CH37636), P182, DOI 10.1109/ISSCC.2005.1493929
  • [9] A 5.6-ns random cycle 144-Mb DRAM with 1.4 Gb/s/pin and DDR3-SRAM interface
    Pilo, H
    Anand, D
    Barth, J
    Burns, S
    Corson, P
    Covino, J
    Lamphier, S
    [J]. IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2003, 38 (11) : 1974 - 1980
  • [10] Taito Y, 2003, ISSCC DIG TECH PAP I, V46, P306