RNA inverse folding using Monte Carlo tree search

被引:10
作者
Yang, Xiufeng [1 ]
Yoshizoe, Kazuki [4 ]
Taneda, Akito [2 ]
Tsuda, Koji [1 ,3 ,4 ]
机构
[1] Univ Tokyo, Dept Computat Biol & Med Sci, Grad Sch Frontier Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778561, Japan
[2] Hirosaki Univ, Grad Sch Sci & Technol, 3 Bunkyo Cho, Hirosaki, Aomori 0368561, Japan
[3] Natl Inst Mat Sci, Ctr Mat Res Informat Integrat, 1-2-1 Sengen, Tsukuba, Ibaraki 3050047, Japan
[4] RIKEN Ctr Adv Intelligence Project, Chuo Ku, 1-4-1 Nihombashi, Tokyo 1030027, Japan
来源
BMC BIOINFORMATICS | 2017年 / 18卷
关键词
Monte Carlo tree search; RNA inverse folding; Local update; Pseudoknotted structure; WEIGHTED SAMPLING ALGORITHM; SECONDARY STRUCTURE; DESIGN; PREDICTION;
D O I
10.1186/s12859-017-1882-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Background: Artificially synthesized RNA molecules provide important ways for creating a variety of novel functional molecules. State-of-the-art RNA inverse folding algorithms can design simple and short RNA sequences of specific GC content, that fold into the target RNA structure. However, their performance is not satisfactory in complicated cases. Result: We present a new inverse folding algorithm called MCTS-RNA, which uses Monte Carlo tree search (MCTS), a technique that has shown exceptional performance in Computer Go recently, to represent and discover the essential part of the sequence space. To obtain high accuracy, initial sequences generated by MCTS are further improved by a series of local updates. Our algorithm has an ability to control the GC content precisely and can deal with pseudoknot structures. Using common benchmark datasets for evaluation, MCTS-RNA showed a lot of promise as a standard method of RNA inverse folding. Conclusion: MCTS-RNA is available at https://github.com/tsudalab/MCTS-RNA.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Beyond games: a systematic review of neural Monte Carlo tree search applications
    Kemmerling, Marco
    Luetticke, Daniel
    Schmitt, Robert H.
    APPLIED INTELLIGENCE, 2024, 54 (01) : 1020 - 1046
  • [42] Generating High Coherence Monophonic Music Using Monte-Carlo Tree Search
    Fu, Xiao
    Deng, Hangyu
    Yuan, Xin
    Hu, Jinglu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 3763 - 3772
  • [43] Mothra: Multiobjective de novo Molecular Generation Using Monte Carlo Tree Search
    Suzuki, Takamasa
    Ma, Dian
    Yasuo, Nobuaki
    Sekijima, Masakazu
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (19) : 7291 - 7302
  • [44] Using Heuristic Solver to Optimize Monte Carlo Tree Search in Dots-And-Boxes
    Lu, Junkai
    Yin, Hang
    PROCEEDINGS OF THE 28TH CHINESE CONTROL AND DECISION CONFERENCE (2016 CCDC), 2016, : 4288 - 4291
  • [45] Solving Stochastic Orienteering Problems With Chance Constraints Using Monte Carlo Tree Search
    Carpin, Stefano
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024,
  • [46] Programming Heterogeneous Parallel Machines Using Refactoring and Monte-Carlo Tree Search
    Brown, Christopher
    Janjic, Vladimir
    Goli, M.
    McCall, J.
    INTERNATIONAL JOURNAL OF PARALLEL PROGRAMMING, 2020, 48 (04) : 583 - 602
  • [47] Interpretability of rectangle packing solutions with Monte Carlo tree search
    Lopez, Yeray Galan
    Garcia, Cristian Gonzalez
    Diaz, Vicente Garcia
    Valdez, Edward Rolando Nunez
    Gomez, Alberto Gomez
    JOURNAL OF HEURISTICS, 2024, 30 (3-4) : 173 - 198
  • [48] Monte Carlo Tree Search: a review of recent modifications and applications
    Maciej Świechowski
    Konrad Godlewski
    Bartosz Sawicki
    Jacek Mańdziuk
    Artificial Intelligence Review, 2023, 56 : 2497 - 2562
  • [49] Monte carlo tree search method for solving the knapsack problem
    Iima H.
    Hyono T.
    IEEJ Transactions on Electronics, Information and Systems, 2020, 140 (10) : 1141 - 1146
  • [50] Automatic Feature Engineering Through Monte Carlo Tree Search
    Huang, Yiran
    Zhou, Yexu
    Hefenbrock, Michael
    Riedel, Till
    Fang, Likun
    Beigl, Michael
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2022, PT III, 2023, 13715 : 581 - 598